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Abstract In recent years, gesture recognition using miniaturised radar sensing has at-
tracted attention in both academia and industry. The ability to sense mid-air gestures
with miniaturised radars through non-conductive materials with high spatial resolu-
tion opens up new opportunities for interacting with systems embedded with such
radar technology. Examples include radars embedded in wearables, cars’ dashboard,
smart furniture, and other objects within smart environments. However, a deeper
understanding of how different occluding materials impact gesture recognition per-
formance is needed. Previous studies have primarily focused on evaluating only one
type of radar signal representation, despite the fact that several other representations
exist and proved effective. One way to better understand the aforementioned impact
of the occluding materials on the radar signal is thus to compare different radar
signal representations. To this end, this paper conducts a comparative testing of four
(4) signal representations (In-phase and Quadrature (IQ) representations in time and
frequency domain, Range-Angles and Range Doppler) in order to evaluate their ro-
bustness against signal distortions caused by occluding materials. The preliminary
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results show that the performance increases with higher transmission coefficient and
that compared to IQ, Range-Doppler and Range-Angles signal representations are
significantly more robust against distortions caused by occluding materials.

1 Introduction

In recent years, gesture recognition with miniaturised radar sensing has received
increased attention in both academia and industry. Two factors have fuelled this
trend: the emergence of low-cost, low-power radar chips and breakthroughs in deep
learning, which enable highly accurate interpretation of radar signals for interaction.
Furthermore, these miniaturised radars have the potential to sense mid-air gestures
through non-conductive materials with high spatial resolution [17, 9]. Enhancing
such interaction through materials opens up new opportunities for creating a variety
of interactive systems with such radars embedded. Embedding miniaturised radars
in wearables, car padding and dashboards, furniture and other objects to create
smart environments will facilitate better use of computational resources around us.
Despite several advances in the field of radar sensing [11, 14, 15, 10, 16] there is still
a lack of deeper understanding of how different occluding materials impact gesture
recognition performance and how to improve it.

When radar sensing is used for interaction through materials, the signal needs to
penetrate the covering material to reach the moving target (e.g. a hand) and reflect
from the target back to the radar antenna through the same material. The machine
learning classifier can use the signal captured by the radar antenna for gesture clas-
sification. However, the signal is affected by the electrical properties of the covering
material and the wavelengths at which the sensor operates. In prior work, Copi&
Pucihar et al. [17] found that the gesture detection performance of millimetre-wave
(mm-wave) radar-on-chip sensor is closely correlated to the transmission coefficient
(T;) of occluding material. However, they trained their classifiers using only one
type of radar signal representation—a sequence of Range-Doppler images.

Previous work showed that radar systems can effectively use several different
digital signal processing techniques, resulting in a diverse set of radar signal repre-
sentations that capture intricate information essential for later feature extraction and
gesture recognition. These include time series of a raw signal [12, 13], range [18, 14],
permittivity [14], micro-Doppler [2], Range-Doppler [7, 8, 19, 20, 21, 5, 1], Range-
Angle of Arrival (AoA) [7, 22], and point cloud data [11, 10, 6].

In this paper, we perform comparative testing between four (4) different signal
representations: (i) In-phase and Quadrature (IQ) representation in time domain, (ii)
1Q representation in frequency domain (IQ-FFT-ABS), (iii) Range-Angles and (iv)
Range Doppler. We investigate how robust are these signal representations against
distortions caused by occluding materials. The results indicate that performance
improves with higher transmission coefficients, aligning with observations from
prior work [17]. Additionally, our preliminary evidence suggest that, compared to
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1Q signal representations, Range-Doppler and Range-Angles representations are
more robust against distortions caused by occluding materials.

2 Gesture recognition experiments
2.1 Gesture set, experiment system and data collection

We captured two datasets: No-material dataset with more than 2200 gesture record-
ings where no material occluded the sensor and Material dataset with more than
32000 gesture recordings where 14 different material were placed between the sen-
sor and the hand performing gestures. We captured recordings of 24 different gestures
(Table 2), performed by participants whilst sitting at the table. The experiment system
to capture data was positioned on the table and consisted of the Texas Instruments
IWR6843ISK Radar sensor and Leap Motion sensor (Fig. 1). Further details about
the experiment system used are available in [4].

Study
Coordinator's seat

. . L Ultraleap's
b - o 5 LeapMotion
. ! s sensor

IWR6843ISK &

DCA1000EVM

Fig. 1 Experiment system: Left—Participant sits at the desk whilst performing gestures above the
capture system. Different materials are placed on the open space where the radar sensor (Texas
Instruments IWR6843ISK) is located. Participants are asked to not move closer than 25 centimetres,
which is indicated to them by the two vertical blue spacers on the desk. The screen indicates the
state of recording, such as time, gesture and material that is being recorded. Right—Capture system
with Texas Instruments IWR6843ISK radar sensor and Leap Motion sensors. Materials are placed
on the open space configured to uphold the radar’s Field of View at 140 degrees azimuth and 120
degrees elevation. The radar sensor and data capture card are housed within the radome, with the
Leap Motion sensor positioned on its top.

The gesture selection and sensor placement were based on a literature review,
which identified horizontal sensor placement as the dominant configuration. For
gesture selection, we identified all gestures proposed in the existing body of literature
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and selected a subset of 24 gestures based on a heuristic approach. This approach
prioritised gestures with movement trajectories that are favourable for our sensing
system and sensor placement. Concretly, we selected gestures where movement
trajectories induce changes in range and azimuth angle. Given our sensor’s antenna
configuration and placement, our sensor has higher resolution in range and azimuth
angle compared to elevation angle dimension. Therefore, we avoided gestures that
rely on changes in elevation to create more favourable sensing conditions.

We captured data from 19 participants, where each participant made 5 gesture
repetitions for each of the 24 gestures though 13 different materials (Table 1) and
once without any material. Each participant thus performed 5 X 24 x 14 or 1680
gestures. The data was collected over 4-6 sessions. Each session was limited to 1.5
hour. As the speed at which users managed to record gestures varied, the number
of required sessions varied. After collecting data for 2 materials (30-40 minutes of
capture time required), there was a compulsory 5-minute break. Participants were
continually reminded they can take a break at any point during the capture if they
feel tired. Materials were carefully selected to cover the whole range of transmission
coeflicients (Table 2). We used transmission coefficients measurements published
in [17].

Despite having 24 gestures in the dataset, the evaluation reported in this paper
uses only 10 gestures (see underlined gestures in Table 2). This decision was made
because we were unable to build a high performance classifier for all 24 gestures in the
No-material dataset. A poorly performing classifier cannot be used to investigate the
robustness of these signal representations against distortions caused by occluding
materials, as classification errors in the baseline condition (No-material dataset)
introduced excessive noise into the signal. To address this issue, we used a subset of
10 gestures, selected based on confusion matrix results, ensuring we chose gestures
with good scores.
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Fig. 2 Confusion matrices for Range-Angles (left) and Range-Doppler (right) based classifiers
evaluated on No-material dataset. We selected 10 gestures favourable for our recogniser: 1, 2, 3, 4,
5,11, 12, 14, 15 and 23 (underlined in Table 2)
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ID Name Thickness Tc Image ID Name Thickness Tc Image
12 Drywall Plate 12 085 30 Acrylic 10 0.91
Plexiglass
15 Polyethylene 15 0.94 37 Paper 80G/M2 9 063
Foam (100 sheets)
17 Styrofoam 10 0.98 e 47 Oriented 10 0.54
i Strand Board
(OsB)
18 Chipboad 16 0.31 . 57 Larix Decidua 10 0.66
19 Ceremic 6 0.82 61 Quercus Robur 10 0.33
Petraea
20 Glass 4 092 66 Ethylene-vinyl 10 0.93
acetate (EVA
foam)
27 Rubber panels 15 0.04 S T |
tartan

Table 1 Material dataset with 13 materials selected. Materials were selected from the catalogue
of materials published in [17]. For consistency purposes, we use the same IDs.

2.2 Data pre-processing

Each gesture recording is 1.2 seconds long. The radar sensor was configured to
capture data at 100 frames per second. We used an antenna array configuration of
4Rx and 3Tx antennas in Multiple Input Multiple Output (MIMO) configuration
with Time Domain Multiplexing (TDM). Chirps were generated using Frequency
Modulated Continuous Waveform (FMCW) with 96 chirps per frame operating
within the frequency range of approx 60-64GHz. Detailed radar sensor configurations
are provided in appendix.

For comparative testing, we pre-processed four different radar signal represen-
tations. Each frame is represented as: 1Q and IQ-FFT-ABS radar cube, or as a set
of Range-Angle and Range-Doppler images. The data was pre-processed using Dis-
ProTool. For more details regarding the digital signal processing pipelines, see [3].
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ID Name Time ID Name Time
1 Swipe left 13 Hand i
opening
2 Swipe right 14 Clenching
= (Hand
| closing)
v
4 Swipe | 16 Push
down
8
5 Left cross 17 Clockwise
circle
6 Right cross 18 Counter
clockwise
= circle
7 Pinch index ‘ I‘ I 'I ’| I 19 Palm hold
8 Star u 20 Fist hold
9 Finger slide i ] i 21 Thumbs up |
up
10 Finger slide i1 i1 2V
down
11 Paimtit | ’| I I 23 L
12 Wiggle 3 . g 24 Pointing
times index

Table 2 Gesture set. Ten underlined gestures were selected for the evaluation based on the confusion
matrix.
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2.3 Model architecture

We used Conv3d layer based classifier. However, hyperparameters were optimised
for each signal representation. For IQ signal, the input is in the format of (120, 96,
32, 4), for Range-Doppler (500, 32, 32, 1), and for Range-Angles (400, 32, 32, 1)

For 1Q signal representations, each 1.2 second gesture recorded at 100 Hz is
represented in the format of 120 frames x 96 chirps X 4 antennas X 256 fast time
samples. Radar was configured to sense the maximum distance of 10 meters; however,
we performed micro gestures within 1 m range. For this reason, we reduced the fast
time samples (range bins) to 32 bins.

For Range-Doppler signal representation, each 1.2 second gesture recorded at
100 Hz is represented as a set of 32 x 32 Range-Doppler images. Out of 12 available
virtual antennas we chose 4 (i.e. 4, 5, 10 and 11). As a result, each gesture contains
480 Range-Doppler images.

For Range-Angles signal representation, each 1.2 second gesture recorded at
100 Hz is represented as a set of 32 X 32 Range-Angle images. One set along the
azimuth and another along the elevation angles. This resulted, 2 x 120 = 240 (32 %
32) Range-Angle images.

The input data was then fed into the first convolutional layer (Conv3D) This
layer is immediately followed by a 3D max pooling layer. This is repeated 4 times.
Each time we used different configuration of kernel size and number of filters (see
appendix for details). The output from these layers is then flattened and passed
through a fully connected layer, leading to a final dense layer of 10 neurons with
softmax activation (see appendix for details about number of neurons).

2.4 Data partitioning and training

All models were trained on No-material dataset only and we consider 10 out of 24
gestures (see Table 2) as explained earlier. The dataset was partitioned as follows:
70%, 20% and 10%, for training, validation and testing respectively. In case of
Material dataset, no partitioning was done. The whole dataset can be considered as
unseen data and is used to investigate how robust are different signal representations
against distortions caused by occluding materials.

The models were trained using categorical cross-entropy as the loss function and
are optimised with the Adam optimiser, featuring an adjusting learning rate of 0.001
and a weight decay of 0.0002. Training was done with 200 epochs and patience of
50.
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3 Results

We performed model evaluation on two datasets. No-material dataset to see how good
are models in general, and material dataset to investigate how robust are different
signal representations against distortions caused by occluding materials.

3.1 Model evaluation on No-material dataset

The results in Table 3 show accuracy, Area Under the Curve (AUC) and
Per formance = (ACC + AUC)/2 scores for No-material dataset. The training
and evaluation processes were only conducted once, so no statistical testing compar-
ing model performance is possible. The highest performance was achieved by model
trained with IQ-FFT-ABS data representation. The limitation of this testing is a very
small test partition (only 10% of data was used for testing). This decision was made
due to small size of No-material dataset.

Data representation ACC  AUC (ACC+AUC)/2

IQ-FFT 0.85 0.99 0.92
IQ-FFT-ABS 0.91 1.00 0.95
Range-Angle 0.86 0.99 0.92
Range-Doppler 0.80 0.97 0.89

Table 3 Classification performance on No-material dataset.

3.2 Model Evaluation on Material dataset

The results in Fig. 3 show how classification performance of 4 different models
changes with transmission coefficient. In total, the graph represents performance
through 13 different materials (Table 1). We can observe performance increase
as transmission coefficient increases. This is expected and in line with what was
observed within prior work [17].

The results in Fig. 4 compare overall performance of 4 different models on
Material dataset (left) and performance drop, defined as the difference between
performance in No-material and Material datasets. The worst performing model is
1Q model, which also experiences the highest performance drop. Statistical testing
was done using non-parametric tests (Friedman with Dubin-Conover pairwise com-
parison) as the data was not normally distributed. The results show that both 1Q
data representation performed significantly worst compared to Range-Doppler and
Range-Angles. This suggests that Range-Doppler and Range-Angles signal repre-
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Fig. 3 Recogniser performance in relation to transmission coefficient of materials.

sentations are more robust against distortions caused by occluding materials. In the
case of performance, the minimum effect size where significance was reported is
d = 0.11. This resulted in statistical power of 0.57. In the case of performance drop,
minimum effect size where significance was reported is d = 0.19. This resulted in
statistical power of 0.68.

4 Discussion and Future Work

4.1 Is choice of signal representation important when sensing though
materials?

Several systems are focused on radar-based human-computer interaction. These
systems may differ in digital signal processing techniques used, resulting in a diverse
set of radar signal representations that capture intricate information essential for later
feature extraction and gesture recognition. For example, reliable interaction systems
in the literature use various signal representations, including raw signal [12, 13],
range [18, 14], permittivity [14], micro-Doppler [2], Range-Doppler [7, 8, 19, 20,
21, 5, 1], Range-Angle of Arrival (AoA) [7, 22], and point cloud data [11, 10, 6].
In this work, we experimented with four (4) different signal representations: 1Q,
IQ-FFT-ABS, Range-Angles and Range-Doppler. The results showed significant
difference among these representations, particularly between IQ and more complex
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1Q - |IQ-FFT-ABS 4.27 <.001 Q - IQ-FFT-ABS 291 0.006
Range-Angles  3.558 <.001 - Range-Angles 4.79 <.001
- Range-Doppler 1.423 0.163 - Range-Doppler  6.45 <.001
IQ-FFT-ABS - Range-Angles  0.712 0.481 IQ-FFT-ABS - Range-Angles 1.87 0.069
- Range-Doppler 2.847 0.007 - Range-Doppler  3.54 0.001
Range-Angles - Range-Doppler 2.135 0.039 Range-Angles - Range-Doppler 1.67 0.104

Fig. 4 Comparison of Overall performance and Performance drop for 4 different signal
representations. Top—box-lots of Performance and Performance Drop. Bottom—Results of
Friedman test with Durbin-Conover pairwise comparison for Performance and Performance
Drop. NOTE: Per formance = (Aaccuracy + AUC)/2 and Per formancep,op =
Per formancenomaterial — Per formanceprarerial

Range-Angles and Range-Doppler representations. The latter proved to be more
robust against distortions caused by occluding materials.

Having said this, it is important to highlight several limitations of this compara-
tive testing. While our focus is on signal representation, we also use different model
architectures, which might influence the obtained results. This decision was neces-
sary because tuning network architecture for the task at hand is crucially affected by
the type of input provided to the network. This interdependence makes it practically
impossible to decouple network architecture from signal representation. To mitigate
this effect, we used the same type of deep neural network and only change hyperpa-
rameters, such as: kernel size, number of filters, number of neurones, learning rate
and decay. Additionally, We ensured that the model architectures are optimised to
achieve comparable classification accuracy on baseline condition (e.g. No-material
dataset).
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Another potential cofounding variable is the method used for handling data from a
virtual antenna array. For IQ data representations, the signal was not decoupled using
MIMO TDM. In contrast, for the Range-Doppler representation, we used data from
only 4 of 12 virtual antennas, which are represented in 4 Range-Doppler images.
Meanwhile, the data in the Range-Angles representation utilised all virtual antenna
pairs, but was represented only in 2 Range-Angles images. Further experimentation
is needed to verify the existence and significance of these potential cofounding
variables.

4.2 Limitations and future work

In this work, we ran comparative testing for only 4 different signal representations.
There are still several other promising signal representations methods that should be
tested in the future, such as for example: point cloud, micro-Doppler, combination
of range and permittivity as done in [14] or [16].

The other limitation is the size of No-material dataset. K-fold cross validation
should be done in the future, or we should work on increasing the size of No-material
dataset. This would also allow us to do proper model evaluation for baseline condition
(e.g. No-material dataset).

5 Conclusion

In this paper, we performed cooperative testing between four (4) different signal
representations: In-phase and Quadrature (IQ) representations in time and frequency
domain, Range-Angles and Range Doppler. We investigated how robust are these
signal representations against distortions caused by occluding materials. The results
show that performance increases with higher transmission coefficient. This is ex-
pected and in line with what was observed within prior work [17]. We also found
preliminary evidence that compared to IQ signal representations, Range-Doppler
and Range-Angles representations are more robust against distortions caused by oc-
cluding materials. This pioneering study introduces the first example of cooperative
testing, evaluating different signal representations in scenarios where sensors are oc-
cluded by materials. It offers substantial potential for future research, which makes
it a valuable contribution to the community.
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Appendix A: Radar sensor configuration

Appendix B: Detailed model architectures

conv3d_input | input: | [(None, 120, 96, 32, 4)]
[ Tmputlayer | output: | [(None, 120, 96, 32, 4)1 |

conv3d | input: | (Nome, 120, 96, 32, 4)
Conv3D | output: | (Nene, 118, 94, 30, 32)

[ max_pooling3d | input: | (None, 118, 94, 30, 32) |
| MaxPooling3D [ output: | (None, 59, 47, 15, 32) |

[batch normalization | input: | (Noe, 59, 47, 15, 32) |
[ Batch i [‘output: | (None, 59, 47, 15, 32) |

[ conv3d_input | input: [ [(None, 400, 32,32, ] | [conv3d_input | input: [ [(None, 500, 32, 32, 1] |
| TmputLayer [ output: | [(None, 400, 32,32, 1)] | | TnputLayer | output: | [(None, 500, 32, 32, 1)] |

[conv3d 1 input: [ (None, 59, 47,15, 32) |
[ Conv3D | output: | (None, 57, 45, 13, 64) |
[[conv3d T input: | (None, 400, 32,32, 1) | [[conv3d [ input: | (None, 500, 32,32, 1) |
[(Conv3D [ output: | (None, 399, 31, 31, 32) | | ConvD | output: | (None, 499, 31, 31, 32) |
[max pooling3d_1 | input: | (None, 57, 45, 13, 64) |
| MaxPooling3D | output: | (None, 28, 22, 6, 64) |
max_pooling3d | input: | (None, 399, 31, 31, 32) [[max_pooling3d | input: [ (None, 499, 31, 31, 32)
MaxPooling3D | output: | (None, 199, 15, 15, 32) | MaxPooling3D } output: \ (None, 249, 15, 15, 32)
[bateh_s 1 [ input: | (None, 28, 22, 6, 64) |
|_BatchNormalization | output: | (None, 28, 22, 6, 64) |
[[conv3d 1 | input: | (None, 199, 15, 15, 37\ [[conv3d 1 input: | (None, 249, 15, 15, 32)
| Conv3D | output: | (None, 198, 14, 14, 160) | | Conv3D | output: | (None, 248, 14, 14, 180) | [Gomv3d.2 [ mpat: | (Nowe, 26, 22,6,60) |

| Conv3D | output: | (None, 26, 20, 4, 128) |

[‘max_pooling3d_1 [ input: [ (None, 198, 14, 14, 160) | [max_pooling3d 1 | input: | (None, 248, 14, 14, 180) |

| MaxPooling3D_| output: | (None, 99, 7,7,160) | | MaxPooling3D | output: | (None, 124, 7,7, 180) | [(max_pooling3d_2 | input: | (None, 26, 20,4, 128) |
| MaxPooling3D_| output: | (None, 13, 10,2, 128) |
(None, 99, 7, 7, 160) conv3d 2 [ input: [ (None, 124, 7,7, 180) |
output: | (None, 98, 6, 6, 224) Conv3D_| output: | (None, 123, 6, 6, 228) | [atch normalization 2 | input: | (None, 13, 10, 2, 128) |

| “BatchNormalization | output: | (None, 13, 10, 2, 128) |

[ max_pooling3d 2 [ input: [ (None, 98, 6, 6, 224) | [ max pooling3d 2 [ input: | (None, 123, 6, 6, 228) |
[ MaxPooling3D_| output: | (None, 49, 3, 3, 224) | [ MaxPooling3D_| output: | (Nome, 61, 3, 3, 228) | conv3d 3 | input: | (Nome, 13, 10, 2, 128) |
Conv3D | output: | (None, 11, 8, 2, 256) |
[ spatial_dropout3d | input: [ (None, 49, 3, 3, 224) | [ spatial_dropout3d | input: [ (None, 61,3, 3, sz
| SpatialDropout3D | output: | (None, 49, 3, 3, 224) | | SpatialDropout3D | output: | (None, 61, 3, 3, 228) | [(max_pooling3d 3 | input: | (None, 11, 8, 2, 256)
| 93D [ output: | (None, 5, 4, 2, 25

conv3d 3 [ input: | (None, 49, 3, 3, 224) [[conv3d 3 [ input: | (None, 61, 3, 3, 228) . l
Conv3D_| output: | (None, 47, 1, 1, 160) [Conv3D [ output: | (None, 59, 1, 1, 182) [batch_normalization_3 | input: | (None, 5, 4, 2, 256) |
l_ i | BatchNormalization | output: | (None, 5, 4, 2, 256) |

[Ratten [ input: | (None, 47,1, 1, 1@ [Batten | input: | (None, 59, 1, 1, 182)

| Flatten | output: (None, 7520) | Flatten [ output: | (None, 10738) |

(None, 10240)

[ dense | (None, 10738)
None, 228

(None, 224)
- [ (None, 10)

(None, 7520)
o, 220

(None, 512)

(None, 10)

Fig. 5 Model architectures for Range-Angles —left, Range-Doppler —centre and 1Q —right
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