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Abstract In recent years, the development of radar-based human-computer interac-
tion systems using miniature radar-on-chip sensors has attracted significant interest
from both academia and industry. This interest is fuelled by the availability of af-
fordable radar chips and advancements in signal processing and machine learning
that improve radar signal interpretation accuracy. However, several challenges re-
main, particularly when we want to compare different radar-based gesture interaction
systems. On dimension to compare different systems can be based on radar signal
representations since raw voltage data can be used to extract these. Different sig-
nal representations include among others range-Doppler, range-Angle, and point
clouds. Existing research often limits comparative testing to the same radar signal
representation, focusing mainly on gesture recognition algorithms or minimal varia-
tions within digital signal processing pipelines. In order to fill this gap we designed
and created an open source tool that enables fast and reliable dataset preparation for
comparative testing of radar signal representations. The open-source tool enables
visualisation of different radar signal representations, and includes a command-line
interface for batch processing in order to streamline dataset preparations.
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Fig. 1 Digital Signal Processing Tool for Radar-Based Human-Computer Interaction

1 Introduction

In recent years, the development of radar based human-computer interaction sys-
tems based on miniature radar-on-chip sensors has gained significant interest from
both academia and industry. This surge is driven by two main factors: (i) the avail-
ability of affordable radar chips (e.g. Google Soli!, Walabot?, Texas Instruments:
IWR6843ISK, IWR68430DS, IWR14433), and (ii) the major advancements in sig-
nal processing and machine learning that enhance the accuracy of radar signal inter-
pretation for interactive purposes. Despite these advancements, several challenges
remain to be addressed to facilitate practical applications of this technology. On
such challenge relates to cooperative dimension of radar-based gesture interaction
systems.

To date, only a limited number of research papers have compared radar-based
gesture recognisers. Typically, such comparisons are (i) restricted to the same radar
signal representation limiting comparative testing parameters to gesture recognition
algorithms (e.g. comparison of deep neural network architectures [22, 3] and other

Lhttps://en.wikipedia.org/wiki/Google_ATAP#Project_Soli
2 https://walabot.com/
3https://www.ti.com/lit/ug/swru546e/swru546e.pdf
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standard gesture recognisers [5]), or (ii) focus on minimal variations within digital
signal processing pipelines [3]. Consequently, there is a noticeable gap in the liter-
ature regarding comprehensive comparative testing that would encompass a diverse
set of parameter:

* Sensor type (e.g. custom vs. commercially available);

» Usage context (e.g. stationary vs. mobile);

* End users and their body parts involved in the interaction (e.g. fingers, wrist,
hands, forearm, arm);

 Interaction types (e.g. tangible, grasping, mid-air, air-writing, etc.).

* Environment characteristics (e.g. indoor or outdoor as well as setup such as
beneath a surface, through the wall);

* Radar system configuration, including:

— impulse generation methods (e.g. ultra-wide band impulse, pulse Doppler,
frequency modulated continuous waveform);

— transmission and capture methods using various configuration of receiving and
transmitting antennas (e.g. Single Input Multiple Output (SIMO), Multiple
Input Multiple Output(MIMO));

* Radar signal representations (e.g. time series of range, permittivity, micro-
Doppler, range-Doppler, range-Angle of Arrival (AoA), point cloud data).

In this paper, we focus on radar signal representations, with the primary objective
of making comparative testing of radar signal representation more accessible. To this
end, we have designed and implemented an open source tool that enables visualisation
of different types of radar signal representations, such as: range-Doppler, range-
Angles and point clouds (see Fig. 1). Additionally, the tool includes a command-line
interface for batch processing, which is essential for streamlining digital signal
processing pipelines that are required for dataset preparation. The batch processor
also enables generation of In-phase and quadrature (IQ) radar cube representations.
The open source tool is built with a combination of Matalab and Python and is
currently limited to data captured by Texas Instruments radar sensors.

2 Background

Initially, radar systems were designed to gather essential information such as target
location, range, velocity, and radar cross section (RCS), by analysing the electromag-
netic waves reflected from the targets [16]. However, more recently, radar systems
have been adopted for interactive purposes that includes gesture recognition.
Radar-based gesture recognition can be divided into four stages (Fig. 2): (i) im-
pulse generation, (ii) signal transmissions and capture, (iii) digital signal processing
and (iv) feature extraction, and gesture classification. For impulse generation var-
ious methods are available, including ultra-wide band impulse, pulse Doppler or
frequency modulated continuous waveform. For signal transmissions and capture
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different configurations of receiving and transmitting antennas and operation modes
are possible (e.g. Single Input Multiple Output, Multiple Input Multiple Output).
Radar systems can also differ in digital signal processing techniques used, result-
ing in a diverse set of radar signal representations that capture intricate informa-
tion essential for later feature extraction and gesture recognition. These encompass
raw signal [15, 17], range [23, 19], permittivity [19], micro-Doppler [2], range-
Doppler [9, 12, 24, 25, 28, 7, 1], range-Angle of Arrival (AoA) [9, 29], and point
cloud data [14, 13, 8].
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Fig. 2 Stages of radar-based gesture recognition.

Using raw signal representations, some researchers opted against employing pre-
processing methods to fine-tune the signal. Therefore, they directly fed the sampled
raw signal to the classifier [15, 17]. However, more commonly, various processing
techniques have been employed prior to obtaining the other aforementioned signal
representations. Sluyters et al. introduced an innovative pre-processing pipeline [19]
that effectively removes radar source, antenna effects, and static clutters in the fre-
quency domain, subsequently deducing range and permittivity [4] from the time
domain signal. This approach compresses the high-dimensional radar signal into a
two-dimensional space defined by ranges and apparent permittivity. Amin et al. [2]
divided gesture time series into envelopes, generating Spectrograms through the
extraction of maximum and minimum frequencies. Following this, maximum and
minimum micro Dopplers were filtered from these Spectrograms, forming feature
vectors for each gesture.

Another processing technique was employed by Zheng et al. [29] that created
range-Doppler images from the radar signal and conducted static clutter and vibra-
tion removal on these images. They further generated a range-angle map based on
the range-Doppler images and used both range-Doppler and range-angle maps as
classifier inputs. Lee et al. [12] employed range-Doppler images as feature repre-
sentations, executing static clutter removal and Constant false alarm rate (CFAR)
processing. This approach retained real hand without any background information
in the range-Doppler images. Additionally, Pantomime [14] harnessed radar data
to generate point clouds, encapsulating X, Y, and Z coordinates, radial velocity,
and Signal to Noise ratio (SNR). The point cloud generation process employed a
distinctive angle of arrival algorithm known as Capon Beamforming [20].
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As the last and fourth stage, radar-based gesture detection needs to undertake
feature extraction, and gesture classification. Researchers have used a variety of Ma-
chine Learning (ML) and Deep Learning (DL) algorithms for fine feature extraction
and mapping these features into various classes. Hazra et al. and Zheng et al. [9, 29]
used range-Doppler and range-angle images for feature representation, feeding them
into a DL network that incorporates Conv2D for feature extraction and Long Short
Term Memory (LSTM) for implementing the gesture classifier. Similarly, Wang et
al. and Hayashi et al. [25, 7] adopted an approach where range-Doppler images
were used as feature representations, processed through a Conv2D-based network
combined with LSTM for classification. Other researchers have opted for Conv3D
layers merged with LSTM layers for classifier implementation [28]. Furthermore,
Hazra et al. [8] used point cloud data for feature representation, leveraging LSTM
for classifier development. Palipana et al. [14] introduced a hybrid architecture, in-
tegrating PointNet++ followed by LSTM modules for frame-wise spatio-temporal
feature extraction.

In terms of feature direction, channelling extracted features into fully connected
layers for classifier implementation is a prevalent practice among researchers [17, 6,
12, 1, 26], with convolutional layers frequently used for feature extraction. Moreover,
for post-extraction of fine-grained features, the deployment of classifiers using ML
algorithms has gained traction. Liu et al. [13] compared various ML methods, such
as Naive Bayesian, Decision Trees, Support Vector Machine (SVM), and Random
Forest, against renowned DL architectures like VGG-Net [18], ZF-Net [27], SE-
Net [11], and ResNet [10]. Similarly, Sun et al. [21] used a k-nearest neighbors
(K-NN) classifier with £ = 10 for classification, subsequent to feature extraction via
a CNN network.

As can be see from the literature covered above, the extensive work exists in the
domain of radar-based human-computer interaction covering a variety of approaches.
However, despite this extensive work, very few papers perform comparative testing
that goes beyond exploring different classification algorithms. The lack of compara-
tive testing hinders the ability to gain a deeper understanding of the design space at
play, which makes designing radar-based gesture recognition systems challenging.

3 Digital Signal Processing

Our system is designed to convert raw data (a time series of voltage levels) into
various signal representations, such as: range-Doppler, range-Angles, point clouds,
and IQ radar cube representations. In order to achieve this, we need the following
information regarding radar system configuration:

* General: Range and velocity resolution, maximal range, maximal velocity.

* Chirp configuration: Number of chirps, number of samples per chirp, chirp time,
chirp sweep bandwidth, carrier frequency.

e Antennas configuration: Number of Tx (transmitting) and Rx (receiving) an-
tennas active, the pulse modulation, antenna multiplexing method (e.g. SIMO,
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Fig. 3 Digital signal processing pipeline. The plipeline shows how 4 differnt signal rep

MIMO configuration), orthogonality (Time Domain Multiplexing (TDM) or Bi-
nary Phase Modulation (BPM)), distances between Rx and Tx antennas.

To achieve this, we were required to apply several steps within the Digital Signal
Processing (DSP) pipeline, presented in Fig. 3. At the most rudimentary level, the
radar system outputs In-phase (I) and Quadrature (Q) data streams (a pair for each
receiving antenna). These streams form the input into our DSP pipeline, which starts
by re-shaped data stream pairs into IQ signal. In the next stage the IQ signal is
reshaped into the radar cubes (also known as radar frames) with the following cube
format: number of chirps X number of Rx channels X number of samples in the fast
time. We refer to this representation as IQ Radar Cube. Next, the Hanning filter and
Fast Furier Transform (FFT) are applied on the fast time axis converting it to number
of range bins. This step is followed by MIMO with Time Domain Multiplexing.

Knowing that MIMO with Time Domain Multiplexing was used allowed us to
isolate virtual antenna chirps and form a radar data cube for each virtual antenna,
changing our radar cube dimensions to: number of chirps, number of virtual antennas,
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number of range_bins. Following a Re-shape, Hannning filter and FFT on the slow
time axis we extract velocity bin information transforming number of chirps into
number of velocity bins. This representation is refered to as range-Doppler. The
radar cube can be easily transformed to range-Doppler images (one for each virtual
antenna).

Next, the FFT is applied on the virtual antenna axis converting it to number of
azimuth or elevation bins.

In order to extract point clouds, we first need to perform target detection where we
are interested in moving targets and targets with high Signal to Noise ratio (SNR). To
calculate the threshold level for distinguishing moving targets from each other, we
apply a Constant False Alarm Rate (CFAR) algorithm along the velocity dimension
of the radar data cube. We also run CFAR along the range dimensions calculating
threshold for isolating targets with good SNR.

After calculating the threshold values in velocity and range axis, we can isolate the
targets by filtering out all the peaks that are below the calculated threshold values.
Now we know the bin index in range and velocity dimension for each identified
target, thus the actual range, velocity, azimuth and elevation values are known. This
allows us to calculate the posting of detected targets.

Visualiser VT N Batch processor
Visualiser

R Doppl i
ange Doppler Command line Scheduler Processor Archiver
interface

Matlab scripts

Range Azymuth
“Angle Python scripts
Configurator Processor

Range Elevation

Point Cloud

[0

Fig. 4 Architecture of the Digital Signal Processing Tool for Radar-Based Human-Computer
Interaction. The application is designed with two parts, the Visualiser and Batch Processor.

4 System Implementation

The Digital Signal Processor for Radar-Based HCI (Fig. 1) is implemented with
Matlab 2024 and Python 3.8. The tool consists of the Visualiser and Batch Processor
(see Fig. 4). The visualiser is intended as exploratory tool for fine-tuning the pre-
processing parameters when optimising signal representations, such as for example
Range-Doppler or Range-Angle images. Once the parameters are chosen, we can
export them into JSON file for later use with Batch Processor. Batch processor
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sensorSettings.json
{

processing.json
{

"metajson"
emCon

mmary'’ his is a comments field not passed to device",

sceneParameters":

"ambientTemperature_de:

"maxDetectableRange.

"rangeResolution_c

"maxVelocity_km

"velocityResolu

"measurementRate": 4884,

"typicalDetectedObjectRCS": 1

darDataFRomE/data/"
"'./RadarDataFRomE/dataProcessed/"

0,
rd_enable_antenna_effect_removal”: true,

"mmWaveDevices": [

$ batchProcessor.py --jsonProc ./processing.json --jsonSettings ./sensorSettings.json

Fig. 5 Sample JSON files and Batch Processing command.

requires two JSON files (Fig. 5), one for configuring sensor settings, and the other
one for configuring variable processing elements we make available in Visualiser.

We incorporated several toolboxes such as Phased array system toolbox, Signal
processing toolbox, Matlab compiler and Python sub-process. The user interface is
built using Matlab GUI layouts toolbox. Batch processor is implemented as a Python
script and is parallelised for optimisation purpose: it tries to determine how many
parallel processes it should initialise based on available CPU resources.

The current version of the tool was tested only using Texas Instruments radar
chips (Fig. 6). As the solution is available as open source and if details about radar
system configuration are known, it should be possible to use the tool for data captured
with other radar systems.

Range Doppler

Range Azymuth Angle

Range Elevation Angle

Fig. 6 Example output of processed sequences for gesture swipe right.
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5 Conclusion and Future Work

We developed a Digital Signal Processor for Radar-Based HCI, which can gener-
ate several different representations (range-Doppler, range-Azimuth-Angle, range-
Elevation-Angle, point cloud, IQ) of radar signal. The preliminary evaluation showed
the tool performs well, however, it is limited in the number of different representa-
tions and sensors it supports. Thus, in the future, we will focus on expanding the
functionality of the tool to other radar sensors and signal representations.

Acknowledgements We acknowledge the support from Slovenian Research Agency, grant number
P1-0383, P5-0433 and J5-1796 and support from research program CogniCom (0013103) at the
University of Primorska.
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