
Chapter 1
zeroG: Towards an Integrated Development
Environment for Deploying Radar-based
Gesture User Interfaces

Arthur Sluÿters[0000−0003−0804−0106] and
Mehdi Ousmer[0000−0002−0222−0029]

Abstract Despite advancing at a tremendous pace recently, few real-world appli-
cations have stemmed from research on radar-based gesture interaction. This phe-
nomenon can be attributed to the complexity of integrating signal processing tech-
niques and gesture recognition algorithms into user-friendly applications, especially
for developers lacking expertise in this field. In response, this paper introduces the
main ideas behind zeroG, an upcoming software framework designed to streamline
the development of radar-based gesture interfaces. Once completed, its graphical
user interface should enable developers to assemble standardized modules into com-
plex gesture recognition dataflows, facilitating both testing and application develop-
ment. By introducing a clear separation of concerns between application frontend
and gesture recognition, zeroG will enable developers to effortlessly adapt existing
dataflows to new applications or sensors, without requiring extensive experience in
(radar-based) gesture recognition. This paper explores the current landscape of tools
for creating radar-based gesture interfaces, introduces the core elements of the zeroG
framework emerging from its early stages of design and development, and outlines
future development stages and potential challenges.

1.1 Introduction

Research on radar-based gesture interaction has been advancing at a tremendous pace
in recent years [1, 16, 42]. However, despite the involvement of large companies like
Google with their Soli platform [25], few real-world applications have emerged from
this research. One reason for this lack of enthusiasm is the complexity involved
in leveraging signal processing and gesture recognition techniques to create user-

Arthur Sluÿters, Mehdi Ousmer
Université catholique de Louvain, Louvain Research Institute in Management and Organizations,
Place des Doyens, 1, B-1348 Louvain-la-Neuve, Belgium e-mail:arthur.sluyters@uclouvain.
be,mehdi.ousmer@uclouvain.be

1

arthur.sluyters@uclouvain.be, mehdi.ousmer@uclouvain.be
arthur.sluyters@uclouvain.be, mehdi.ousmer@uclouvain.be
...

2 Arthur Sluÿters and Mehdi Ousmer

friendly gesture interfaces. This complexity can be particularly discouraging for
developers who lack expertise in radar-based gesture interaction

While there are development environments for creating user interfaces (UIs)
based on just about every interaction modality, such as voice interaction [26] and
touch interaction [14], the gesture modality still lacks comprehensive coverage [14].
Although we have capitalized on certain aspects of gesture interfaces since their
inception for some devices [18, 21], such as touch screens [9] for 2D multi-stroke
gestures [54, 27] or cameras for 3D mid-air gestures [22, 30], many devices [3]
and contexts of use [14] remain inadequately covered. The development cycle of a
gesture interface is often only partially addressed [50], usually focusing on a few
stages like data acquisition and pre-processing [13], but rarely encompassing the
complete cycle up to its integration into an interactive application [17].

This paper thus introduces zeroG, a software framework in its early stages of
design and development that aims to address these issues by streamlining the devel-
opment of (radar-based) gesture interfaces. It makes multiple contributions in the
domain of Human-Computer Interaction, including:

• A clear separation of concerns between the application frontend and gesture
recognition.

• A standardized format for gestures and modules, which enables developers and
practitioners to implement, share, and assemble modules into complex gesture
recognition dataflows.

• A graphical UI that adapts to developers’ experience levels.
• A seamless transition between development stages (design, implementation, test-

ing, deployment) thanks to its tightly integrated set of tools.

Together, these contributions will help developers effortlessly create and maintain
highly usable gesture-based interfaces without requiring extensive knowledge of
(radar-based) gesture recognition. The rest of this paper is structured as follows:

• Section 1.2 explores related works, including techniques for radar-based gesture
interaction and tools for assisting developers in the creation of gesture-based
applications. Based on our observations, it introduces the main design rationale
for zeroG.

• Section 1.3 provides an overview of zeroG’s key components, namely its dataflow
testing and application development tools, and gesture recognition service.

• Section 1.4 then details elements of its software architecture, including gesture
sets, modules, and dataflows.

• Section 1.5 discusses the main challenges and future directions for the develop-
ment of zeroG.

• Section 1.6 concludes the paper.

Through this approach, we aim to demonstrate how, once completed, zeroG could
simplify the development process of (radar-based) gesture interfaces and contribute
to their popularization.

1 zeroG: Towards an IDE for Radar-based Gesture Interfaces 3

1.2 Related Work

In this section, we explore existing works on radar-based gesture recognition (Sec-
tion 1.2.1) and tools designed to facilitate the creation of gesture-based interfaces
(Section 1.2.2). We then introduce the main rationale for the zeroG framework
(Section 1.2.3).

1.2.1 Techniques for Radar-based Interaction

Recent years have seen significant advancements in research on radar-based gesture
recognition [1, 16], with a wide variety of radar sensors being featured in the
literature [42].

Among these, Google’s Soli [25] is one of the most mature systems. Its extremely
compact size enables integration into small portable devices like smartphones and
smartwatches. Soli was initially evaluated with a limited set of four micro-gestures,
but subsequent research has explored other gestures, contexts, and applications [51].
For instance, Hajika et al. [19] employed a wrist-worn Soli radar to identify on-skin
hand gestures, such as swiping on the back of the hand. Hayashi et al. [20] used a Soli
radar embedded in a smartphone to recognize swipe interactions. Their model was
capable of identifying gestures from unsegmented data streams while being small
and efficient enough to run on low-power devices. Pucihar et al. [34] explored Soli’s
ability to detect gestures through 75 materials of varying thicknesses. Similarly,
Leiva et al. [24] investigated the feasibility of integrating Soli into clothing and
furniture by capturing gestures through three different fabrics.

While Soli’s high-frequency and low-power operation makes it ideal for close-
range, high-precision applications, it is not suited for all use cases. For example,
Palapina et al.’s Pantomime [31] focused on full-body gesture recognition, which
required a radar with a greater range than Soli, at the cost of a lower resolution. They
developed a technique based on point clouds to reduce the size of raw radar data
before feeding it into feature extraction and classification algorithms. Sluÿters et al.’s
RadarSense [42] tackled the challenge of interoperability across radar sensors. By
applying normalization to radar signals, they aim to facilitate the reuse of datasets
across different environments and radar systems, as long as these systems operate
within the same frequency range.

Despite the wide range of radars, contexts, and gesture sets explored in these
studies, the proposed techniques often lack flexibility or require substantial expertise
to adapt them to new contexts, such as different sensors, gesture sets, or environments.

4 Arthur Sluÿters and Mehdi Ousmer

1.2.2 Tools for Creating Gesture-based Applications

Numerous tools have been proposed to facilitate different stages in the creation of
gesture-based applications.

For instance, Ashbrook et al.’s MAGIC [4] is designed to aid in the design
and testing of gestures, particularly to prevent unintended activations. MAGIC’s
implementation is adaptable to a variety of sensors and provides video feedback for
system designers.

Jackknife [46] is a modality-agnostic gesture recognizer that comes with a collec-
tion of techniques, allowing it to handle a wide variety of contexts (sensors, environ-
ments). While it can be adapted to the needs of specific applications relatively easily,
it may need to be combined with other techniques (e.g., gesture segmentation) in
some contexts (e.g., real-time gesture interaction from a continuous stream of data),
which would require more expertise in gesture recognition to perform, and may
not be suited to all contexts (e.g., another recognizer might be needed to recognize
gestures accurately).

Leiva et al.’s Gesture à Go Go [23] augment stroke gesture datasets with synthetic
examples derived from as few as one recording of each gesture. This tool significantly
reduces the time and effort needed to collect enough examples of gestures for training
algorithms for gesture recognition, such as Jackknife.

In [12], Caramiaux et al. introduce a technique for gesture recognition that char-
acterizes gesture execution, including scaling, rotation, and speed. This technique
can be leveraged by developers to construct highly adaptable gesture interfaces. For
instance, the authors demonstrate a sound playback application where the way a ges-
ture is performed changes how the corresponding sound is played, such as playback
speed. The system also supports early recognition, enabling applications to react
while a gesture is still being performed.

XDKinect [29] is an adaptable, extensible framework that facilitates the creation
of cross-device applications using Kinect. With its client-server and event-driven ar-
chitecture, it offers various APIs. The framework supports multi-device interactions
and doesn’t require a direct Kinect connection to the client computer. A user study
found XDKinect easy to use and effective, particularly for users without prior Kinect
experience.

The SoD-Toolkit [38], created for multi-device interactions and ubiquitous en-
vironments, features a ”plug and play” architecture for easy sensor integration. It
includes client libraries for major device and UI platforms, enabling designers to
prototype without physical elements. This toolkit works with Leap Motion, Kinect
v1 and v2, Apple iBeacon, and mobile device sensors. But, it doesn’t allow for
adding new devices and only works with certain app development environments. It
also doesn’t specifically support the development of new gesture-based interactions.

QuantumLeap [41] is a framework for the development of gesture interfaces. Its
modular pipeline architecture can be configured to suit the needs of any gesture-
controlled application using its GUI. The QuantumLeap Javascript API allows de-
velopers to add support for gestures to their applications.

1 zeroG: Towards an IDE for Radar-based Gesture Interfaces 5

While these tools are a great step towards facilitating the development of highly
usable gesture-based applications, they still exhibit several major drawbacks. They
typically do not cover all of the main stages of development. Combined with a lack of
interoperability between tools, this complicates their integration into complete devel-
opment or research workflows. They offer limited modularity and flexibility, making
it challenging to adapt them to new sensors and contexts. For instance, XDKinect
focuses solely on Kinect devices and Jackknife does not support deep learning-based
algorithms for gesture recognition. The tools are usually quite low-level, requiring
substantial expertise in gesture recognition to apply them effectively in real-world
applications (e.g., Jackknife, QuantumLeap). These limitations highlight the need
for a comprehensive framework that can streamline the entire development process
of gesture-based applications, from design to deployment.

1.2.3 Design Rationale of zeroG

With zeroG, we aim to build on the effort of researchers and practitioners in gesture
recognition by creating an integrated development environment for (radar-based)
gesture interfaces. This environment will enable developers to move beyond low-
level implementation challenges and focus on the high-level design of gesture-based
interfaces.

The zeroG framework should be modular and flexible, accommodating a wide
range of applications and contexts of use. It should provide a clear separation of
concerns between application UIs and gesture recognition, facilitating their design,
maintenance, and future evolution. In addition, zeroG should be accessible to devel-
opers of all experience levels: (1) experts could manually create gesture recognition
logic from scratch by freely combining modules into dataflows, (2) advanced users
could adapt predefined dataflow templates for their applications by filling placehold-
ers with suitable module implementations, like in QuantumLeap [41], and (3) novice
users could ask zeroG to suggest or even generate appropriate dataflows based on
criteria such as the type of application, sensor(s), and gestures. Most importantly,
zeroG should facilitate a smooth transition between the various development stages
of gesture-based applications, from testing signal processing and gesture recognition
techniques to developing gesture-based applications, and, ultimately, to their use by
end users and their maintenance.

1.3 The zeroG Framework, a Multi-tool for Gesture-based
Interaction

We envision the zeroG framework as a combination of three main components
(Fig 1.1): (1) a testing tool for signal processing and gesture recognition techniques
(Section 1.3.1), (2) a development tool for gesture-based applications (Section 1.3.2),

6 Arthur Sluÿters and Mehdi Ousmer

Developers & practitioners Mainstream users

Gesture
recognition service

Application
development tool

Dataflow testing
tool

Databases (modules, gestures, dataflows)

Fig. 1.1: Interaction between the main components of zeroG.

and (3) a real-time gesture recognition system (Section 1.3.3). It will target two main
audiences, namely developers and practitioners, with its dataflow testing and appli-
cation development tools, and mainstream users, as a gesture recognition service.

1.3.1 Dataflow Testing Tool

The zeroG dataflow testing tool is designed to assist researchers and practitioners
in the development and evaluation of novel techniques for gesture interaction, span-
ning from signal processing techniques to algorithms for gesture segmentation and
recognition. It enables users to construct and evaluate dataflows of varying com-
plexity (Section 1.4.2 and Fig. 1.3), ranging from simple setups featuring a single
gesture recognition algorithm to integrated solutions combining filters, segmentation
techniques, and gesture recognition algorithms.

By leveraging a standardized data structure for gesture sets, a modular dataflow
architecture, and shareable configuration files, the tool streamlines the integration and
reuse of dataflow, modules, and gestures across testings scenarios (Section 1.4). This
streamlined approach is especially useful for comparative testings of dataflows, like
evaluating a new algorithm against state-of-the-art techniques in various conditions
or selecting the dataflow configuration best suited to a specific context of use. In
addition, the tool makes it trivial to replicate and reproduce testings from other
research teams, as all the necessary data can be shared in a simple, standardized
package. This could foster collaboration across researchers and ensure the integrity
and reproducibility of experiments.

The tool’s UI features a dynamic dashboard (Fig. 1.2a), providing users with infor-
mation and control over completed, ongoing, and scheduled testings. This dashboard
also serves as a hub for accessing other testing-related features, including creating
new testings and visualizing the results of completed testings. Selecting a specific
testing shows its dataflow configuration, description, status, and logs (Fig. 1.2b).
Testings can be run on external devices, such as a smartphone or a smartwatch, to
determine how a dataflow performs on devices with different capabilities (Fig 1.2c).
Once a testing is completed, users can generate visual representations, including
confusion matrices, to help visualize its results (Fig. 1.2d).

1 zeroG: Towards an IDE for Radar-based Gesture Interfaces 7

zeroG Search zeroG

Manage testings Create testing
Create a testing procedure to evaluate a
gesture recognition pipeline.

Visualize results
Generate graphs and tables from the
results of a testing.

Status Latest testings

Logs

Manage testings
Manage your previous and current
testings.

[Info] Testing started.
[Error] ‘undefined’ has no property ‘x’.
[Warning] Conversion from ‘float’ to ‘int’.

Msg types

87% 57 minutes left

In progress

1 in progress
2 waiting
5 done

Testings > DashboardHome

Dataflows

Settings

Testings

Help

Name Status Date started Actions

2D stroke recognizers co… Running (53%) 34 minutes ago

3D hand gestures Pending n/a

Walabot recognition Pending n/a

Soli recognition Completed December 2, 2022

Soli recognition Cancelled November 7, 2022

Device

(a) Testings dashboard.
zeroG Search zeroG

Manage testings

Configuration

Logs

Information

Testings > New leave-one-out … > OverviewHome

Dataflows

Settings

Testings

Help

Name
New leave-one-out cross validation testing

Description
Leave-one-out cross-validation is a special case of cross-
validation where the number of folds equals the number of
instances in the data set.
Thus, the learning algorithm is applied once for each instance,

Status Untested

Start testing

Edit configurationDownload configuration

Click on the button below to start
the testing.

(b) Testing overview.
zeroG Search zeroG

Manage testings

Configuration

Logs

Information

Testings > New leave-one-out … > OverviewHome

Dataflows

Settings

Testings

Help

Name
New leave-one-out cross validation testing

Description
Leave-one-out cross-validation is a special case of cross-
validation where the number of folds equals the number of
instances in the data set.
Thus, the learning algorithm is applied once for each instance,

Status Untested

Start testing

Edit configurationDownload configuration

Click on the button below to start
the testing.

Start testing

Start

Scan the QR code with your
device or connect to
http://localhost:3000/client

1 Connect devices 2 Select the device(s) that will run the testing

This computer

John Doe’s iPhone

Jane Doe’s Galaxy S20 FE

Jane Doe’s Galaxy Watch

John Doe’s AR glasses

Device name

Refresh

(c) Run a testing on various devices.
zeroG Search zeroG

Home

Dataflows

Testings

Settings

Testings > MyTesting (1) > Results

Help

$P3+
4 sampling points (joints, users) 8 sampling points (joints, users) 16 sampling points (joints, users)

Jackknife
4 sampling points (joints, users) 8 sampling points (joints, users) 16 sampling points (joints, users)

Sampling points Joints$1, HandG… User-depe… $P3+, Jack… SelectConfusion matrix Aggregate (3)

a b c d

a 100 0 0 0

b 0 95 0 5

c 5 0 90 5

d 0 5 0 95

a b c d

a 100 0 0 0

b 0 95 0 5

c 5 0 90 5

d 0 5 0 95

a b c d

a 100 0 0 0

b 0 95 0 5

c 5 0 90 5

d 0 5 0 95

a b c d

a 100 0 0 0

b 0 95 0 5

c 5 0 90 5

d 0 5 0 95

Recognizer
 $P3
 $P3+
 $Q3
 Jackknife
 Penny-pincher

ApplyReset

a b c d

a 100 0 0 0

b 0 95 0 5

c 5 0 90 5

d 0 5 0 95

a b c d

a 100 0 0 0

b 0 95 0 5

c 5 0 90 5

d 0 5 0 95

(d) Visualize the results of a testing.

Fig. 1.2: Mockups of the zeroG UI (testing).

8 Arthur Sluÿters and Mehdi Ousmer

1.3.2 Application Development Tool

The application development tool extends the capabilities of the dataflow testing tool,
enabling the creation of gesture-based interfaces and ensuring a seamless transition
from the testing of dataflows and modules to their deployment in real applications.

The zeroG framework supports two-way communications with applications, al-
lowing them to provide multiple alternative dataflow configurations on their first
start, increasing the likelihood that one matches end-users’ systems (in particular,
the available sensors). Additionally, applications can switch contexts (e.g., from
UI navigation to drawings recognition), dynamically update dataflow elements (e.g.,
gestures and settings), and send user inputs (e.g., 2D touch-based gestures and button
clicks) as input signals to the dataflow. Dataflows and modules are further described
in Section 1.4.2.

An API is provided to simplify the integration of gesture recognition into applica-
tions, managing the assignment of actions in the application to user gestures and all
other communications with zeroG. In addition, zeroG can generate scaffolding code
based on the API to perform, among other, initialization steps, such as connecting
to the framework and submitting dataflow configurations. By reducing the need for
front-end developers to delve into the intricacies of gesture recognition, the elements
aim to facilitate the development of highly usable gesture-based applications.

zeroG

Home

Dataflows

Settings

Testings

Search zeroG Modules Settings Large_User_In… Context_1 Jackknife

Help

Inputs

gesture

datase

Drag to add +

Outputs

name

time

Drag to add+

Parameters

+

sampling_p…

Drag to add

Recognizer Jackknife_core

Jackknife_core

Transformer Jackknife_normalization

Jackknife_normalization

Transformer Jackknife_normalization

Jackknife_normalization

(a) Dataflow creation tool.
zeroG

Home

Dataflows

Settings

Testings

Search settings

Settings

General
zeroG configuration for this dataflow

Sensor
Leap Motion Controller (LMC1)

Sensor
Leap Motion Controller (LMC 2)

Recognizer
Jackknife

Module type
Module name (Module identifier)

Help

Complex setting 2

Subsetting 1

Complex subsetting

(b) Dataflow settings.

Fig. 1.3: Mockups of the zeroG UI (dataflow).

1 zeroG: Towards an IDE for Radar-based Gesture Interfaces 9

1.3.3 Gesture Recognition Service

The gesture recognition service is the only component of zeroG visible to end-users
(Fig. 1.4). As implied by its name, it operates as a background service on users’
devices and performs gesture recognition for client applications. To improve the user
experience, the service minimizes end-user involvement by automatically initializ-
ing gesture recognition dataflows when applications connect and terminating them
when they become inactive. It also handles other tasks in the background, including
managing all communication with gesture-based applications and downloading any
missing modules and gestures required for an application’s dataflow. End-users re-
tain visibility and control over applications reliant on the zeroG gesture recognition
service, including the ability to remove applications that they no longer trust.

1.4 Software Architecture

In this section, we introduce the main pieces of the zeroG software architecture.
Section 1.4.1 introduces our data structure for gesture sets and Section 1.4.2 discusses
the structure of modules and dataflows.

1.4.1 Gesture Sets

Gesture recordings play an important role in the development of gesture-based
interfaces, serving for training and evaluating gesture recognition algorithms [11].
With this in mind, our objective was to design a standardized and versatile data

zeroG settings

Settings

Debug

Applications
Manage zeroG-enabled applications

About zeroG

Applications

Name Last connected Status

Fruit Cutter 3D 1 min. ago Connected

Image manipula… Yesterday

Gesture Painter 2 months ago

Disconnected

Disconnected

Remove selected

Fig. 1.4: Mockup of the zeroG gesture recognition service.

10 Arthur Sluÿters and Mehdi Ousmer

ID int(10)

SensorID int(10)

DataStreamID int(10)

DataPath varchar(255)

SensorStream

ID int(10)

Name varchar(255)

DateCreated date

Description varchar(255)

ImageUrl varchar(255)

CopyrightLicense varchar(255)

GestureSet

ID int(10)

GestureClassID int(10)

AnnotationID int(10)

Participant varchar(255)

VisualizationID int(10)

GestureSample

ID int(10)

GestureSetID int(10)

Name varchar(255)

Type varchar(255)

Description varchar(255)

VisualizationID int(10)

GestureClass

ID int(10)

GestureSetID int(10)

Description varchar(255)

DataStream

ID int(10)

DataStreamID int(10)

Label varchar(255)

StartTimestamp timestamp

EndTimestamp timestamp

Description varchar(255)

ParentAnnotationID int(10)

Annotation

ID int(10)

Name varchar(255)

Description varchar(500)

Manufacturer varchar(255)

Model varchar(255)

SourceFilesPath varchar(255)

Sensor

ID int(10)

Username varchar(255)

Email varchar(255)

Name varchar(255)

Surname varchar(255)

Biography varchar(255)

ImageUrl varchar(255)

User

ID int(10)

Type varchar(255)

FilePath varchar(255)

AltText varchar(255)

Description varchar(255)

Visualization

ID int(10)

Name varchar(255)

Tag

GestureSetID int(10)

TagID int(10)

GestureSet_Tag

GestureSetID int(10)

UserID int(10)

Position int(10)

User_GestureSet

GestureClassID int(10)

TagID int(10)

GestureClass_Tag

Powered By�Visual Paradigm Community Edition

Fig. 1.5: Entity-relationship diagram of zeroG datasets.

structure for gesture sets within zeroG that accommodates signals from different
types of sensors. This approach offers numerous benefits, such as facilitating gesture
reuse across applications and testing environments, and enabling the fusion of data
from multiple sensors (e.g., radars signals, skeleton data, or IMU data). An entity-
relationship diagram illustrating our data structure for gesture sets is provided in
Fig. 1.5.

The GestureSet entity features one or more DataStreams, at least one
GestureClass (e.g., swipe left or thumbs up), and the list of its authors as User
entities. DataStreams encapsulate continuous streams of data and comprise one or
more SensorStreams and Annotations (Fig. 1.6). SensorStreams are uninter-
rupted streams of data captured by a single Sensor. They store the path to a JSON file
featuring the sensor data to avoid storing this information directly in the database.
Annotations serve to annotate a segment within a DataStream and feature a
label, description, and timestamps. They are hierarchical, enabling the creation of
sub-annotations, e.g., if one annotation defines a gesture, sub-annotations can be used
to highlight the start, middle, and ending of the gesture. A GestureClass defines
a category of gestures. It may feature a Visualization (e.g., an image or video)
depicting the gesture. Each GestureClass features at least one GestureSample.
A GestureSample represents one recording of a specific gesture class. In our data
structure, each gesture sample corresponds to an Annotation, thus allowing us to
accommodate both pre-segmented and unsegmented gestures. Each gesture sample
may also include a Visualization. Both the GestureSets and GestureClasses
entities can be assigned Tags, i.e., descriptive labels that can help, e.g., filter and
classify them.

1 zeroG: Towards an IDE for Radar-based Gesture Interfaces 11

a)
SensorStream

(radar)
SensorStream

(Kinect)

b)
SensorStream

(radar)
SensorStream

(Kinect)

c)
SensorStream

(radar)
SensorStream

(Kinect)

Annotation (gesture 1) Annotation (gesture 2)

Annotation (gesture 3)

Annotation (gesture 3)

Annotation
(start)

Annotation
(middle)

Annotation
(end)

DataStream

DataStream

DataStream

Fig. 1.6: Illustration of DataStreams, SensorStreams, and Annotations: a) a
DataStream containing two gestures delimited using annotations, b) one gesture
spanning the entire DataStream, c) a gesture with sub-annotations delimiting its
start, middle, and end.

1.4.2 Modules and Dataflows

Dataflows serve as the foundation for constructing gesture recognition logic. They
can be evaluated in the testing tool (Section 1.3.1) or used for real-time gesture
interaction in the application development tool (Section 1.3.2). They comprise inter-
connected Modules of three types, namely Sources, Transforms, and Sinks.
Sourcemodules generate signals that can be consumed by other modules within

the dataflow. They can range from sensors like radars, Kinect devices, or Leap
Motion Controllers, to user inputs such as buttons in the application UI, to system
events. Transform modules process input signals and send the result to subsequent
modules. For example, a gesture segmenter might take individual frames as input
and produce sequences of frames corresponding to potential gestures. Meanwhile, a
gesture recognizer might receive these sequences of frames and output the type of
gesture detected. Sink modules receive and consume incoming signals. They may,
for instance, send the signals to a connected application or save them in a log file.
Finally, Compoundmodules are combinations of other modules, such as a segmenter
and a gesture recognizer, into a single block for easy reuse across various dataflows.

Applications can feature different Contexts that they switch between during
interaction, with each context potentially requiring a distinct dataflow composed of
different modules tailored to the type of gestures to be recognized. For instance, one
dataflow might be designed for basic UI navigation gestures, while another might
focus on mid-air drawing recognition. This contextual separation enhances gesture
recognition accuracy, by tailoring dataflows to specific sets of gestures, and ensures
a better separation of concerns.

Finally, zeroG supports Templates to facilitate the creation of dataflows for
testings and applications. Similar to the approach used in Sluÿters et al.’s Quan-
tumLeap [41], zeroG’s templates are essentially incomplete dataflows that include
Placeholder modules. These placeholders can be replaced with specific modules

12 Arthur Sluÿters and Mehdi Ousmer

suited to a specific context. Templates promote efficient software reuse and can be
employed by users of all experience levels to easily construct gesture recognition
dataflows. In the future, zeroG could automatically suggest dataflows tailored to an
application’s use case by leveraging the templates, modules, and dataflows stored
in its database. This capability would enable even novice users to create complex
gesture-based interfaces from scratch with minimal effort.

1.5 Challenges and Future Directions

As zeroG is still in its early stages of design and development, several challenges
remain to be addressed before a first version is ready to be deployed. A critical
area concerns the communication between modules, which requires establishing a
standardized data format compatible with various types of sensor data, including
skeletons, radar signals, and IMU data. Another challenge lies in supporting multi-
modal sensing, such as combining radar- and vision-based inputs, which will require
synchronization mechanisms between the source modules. In addition, implementing
a suggestion system for dataflow configurations and modules, as well as automati-
cally downloading missing components required by gesture-based applications, will
both be essential for making zeroG accessible to all users. This will involve creating
and maintaining a comprehensive database of dataflows, modules, and gestures. We
could also look into supporting modules written in different programming languages
to enhance the framework’s flexibility. Finally, providing accurate visualizations of
recorded gestures, especially radar-based ones, presents a significant challenge. For
instance, after end-users record new gestures, they, or the system, may need a way
to visualize it later, e.g., to display gesture hints in the application.

1.6 Conclusion

In this paper, we introduced zeroG, a novel integrated development environment
designed to facilitate the development and deployment of (radar-based) gesture inter-
faces. We began by reviewing existing techniques for radar-based gesture interaction
and tools for developing gesture-based applications. Our findings underscored a need
to streamline the development process of gesture interfaces, leading us to introduce
the design rationale for zeroG. We then described the three main components of ze-
roG, each designed to address some of these shortcomings: (1) the dataflow testing
tool, which assists users in the development and evaluation of gesture interaction
techniques, (2) the application development tool, which helps create gesture-based
interfaces with minimal effort, and (3) the gesture recognition service, which runs in
the background on end-users device and manages gesture recognition for client ap-
plications. Finally, we introduced the core elements of zeroG’s software architecture,
including gesture sets, modules, and dataflows.

1 zeroG: Towards an IDE for Radar-based Gesture Interfaces 13

Overall, by seamlessly integrating into research and development workflows ze-
roG has the potential to foster the emergence of new techniques for gesture recogni-
tion, as well as facilitate their efficient sharing across the community and their use
in real-world applications.

Acknowledgements The authors of this paper are very grateful to the anonymous reviewers whose
suggestions helped improve and clarify this manuscript. Arthur Sluÿters is funded by the “Fonds
de la Recherche Scientifique - FNRS” under Grants n°40001931 and n°40011629.

References

1. Ahmed, S., Kallu, K., Ahmed, S. & Cho, S. Hand Gestures Recognition Using Radar Sensors
for Human-Computer-Interaction: A Review. Remote Sensing. 13 (2021), https://www.
mdpi.com/2072-4292/13/3/527

2. Almendros-Jiménez, J., Iribarne, L., Asensio, J., Padilla, N. & Vicente-Chicote, C. An
Eclipse GMF Tool for Modelling User Interaction. Visioning And Engineering The Knowl-
edge Society. A Web Science Perspective. pp. 405-416 (2009), https://doi.org/10.1007/
978-3-642-04754-1_42

3. Aquino, N., Vanderdonckt, J., Condori-Fernandez, N., Dieste Tubı́o & Pastor, O. Usability
evaluation of Multi-device/platform User Interfaces Generated by Model-Driven Engineering.
Proceedings of the ACM International Symposium on Empirical Software Engineering and
Measurement, ESEM 2010, Bolzano/Bozen, Italy, 16-17 September 2010. pp. 1-10 (2010),
https://doi.org/10.1145/1852786.1852826

4. Ashbrook, D. & Starner, T. MAGIC: a motion gesture design tool. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI 2010, Atlanta, Georgia, USA,
10-15 April 2010. pp. 2159–2168 (2010), https://doi.org/10.1145/1753326.1753653

5. Attygalle, N., Leiva, L., Kljun, M., Sandor, C., Plopski, A., Kato, H. & Pucihar, K. No Interface,
No Problem: Gesture Recognition on Physical Objects Using Radar Sensing. Sensors. 21, 5771
(2021), https://doi.org/10.3390/s21175771

6. Attygalle, N., Vuletic, U., Kljun, M. & Pucihar, K. Towards Hand Gesture Recognition Proto-
type Using the iwr6843isk Radar Sensor and Leap Motion. Proceedings Of The 8th Human-
Computer Interaction Slovenia (HCI SI) Conference 2023, Maribor, Slovenia, January 26,
2024. 3657 pp. 78-88 (2023), https://ceur-ws.org/Vol-3657/paper9.pdf

7. Avrahami, D., Patel, M., Yamaura, Y., Kratz, S. & Cooper, M. Unobtrusive Activity Recogni-
tion and Position Estimation for Work Surfaces Using RF-Radar Sensing. ACM Trans. Interact.
Intell. Syst.. 10 (2019,8), https://doi.org/10.1145/3241383

8. Berenguer, A., Oveneke, M., Khalid, H., Alioscha-Pérez, M., Bourdoux, A. & Sahli, H.
GestureVLAD: Combining Unsupervised Features Representation and Spatio-Temporal Ag-
gregation for Doppler-Radar Gesture Recognition. IEEE Access. 7 pp. 137122-137135 (2019),
https://doi.org/10.1109/ACCESS.2019.2942305

9. Beuvens, F. & Vanderdonckt, J. Designing graphical user interfaces integrating gestures.
Proceedings of the 30th ACM International Conference on Design of Communication, SIG-
DOC ’12, Seattle, Washington, USA, 3-5 October 2012, . pp. 313-322 (2012), https:
//doi.org/10.1145/2379057.2379116

10. Campos, J., Fayollas, C., Martinie, C., Navarre, D., Palanque, P. & Pinto, M. Systematic au-
tomation of scenario-based testing of user interfaces. Proceedings of the 8th ACM Symposium
On Engineering Interactive Computing Systems, EICS 2016, Brussels, Belgium, 21-24 June
2016. pp. 138-148 (2016), https://doi.org/10.1145/2933242.2948735

11. Caputo, A., Giachetti, A., Soso, S., Pintani, D., D’Eusanio, A., Pini, S., Borghi, G., Simoni,
A., Vezzani, R., Cucchiara, R., Ranieri, A., Giannini, F., Lupinetti, K., Monti, M., Maghoumi,

https://www.frs-fnrs.be/en/
https://www.frs-fnrs.be/en/
https://www.mdpi.com/2072-4292/13/3/527
https://www.mdpi.com/2072-4292/13/3/527
https://doi.org/10.1007/978-3-642-04754-1_42
https://doi.org/10.1007/978-3-642-04754-1_42
https://doi.org/10.1145/1852786.1852826
https://doi.org/10.1145/1753326.1753653
https://doi.org/10.3390/s21175771
https://ceur-ws.org/Vol-3657/paper9.pdf
https://doi.org/10.1145/3241383
https://doi.org/10.1109/ACCESS.2019.2942305
https://doi.org/10.1145/2379057.2379116
https://doi.org/10.1145/2379057.2379116
https://doi.org/10.1145/2933242.2948735

14 Arthur Sluÿters and Mehdi Ousmer

M., Laviolajr, J., Le, M., Nguyen, H. & Tran, M. SHREC 2021: Skeleton-based hand gesture
recognition in the wild. Computers & Graphics. 99 pp. 201-211 (2021), https://doi.org/
10.1016/j.cag.2021.07.007

12. Caramiaux, B., Montecchio, N., Tanaka, A. & Bevilacqua, F. Adaptive Gesture Recognition
with Variation Estimation for Interactive Systems. ACM Transactions on Interactive Intelligent
Systems. 4, pp. 1-34 (2014), https://doi.org/10.1145/2643204

13. Chioccarello, S., Sluÿters, A., Testolin, A., Vanderdonckt, J. & Lambot, S. FORTE: Few
Samples for Recognizing Hand Gestures with a Smartphone-attached Radar. Proc. ACM
Hum. Comput. Interact.. 7, 1-25 (2023), https://doi.org/10.1145/3593231

14. Delimarschi, D., Swartzendruber, G. & Kagdi, H. Enabling integrated development envi-
ronments with natural user interface interactions. Proceedings of The 22nd International
Conference on Program Comprehension, ICPC 2014, Hyderabad, India, 2-3 June 2014. pp.
126-129 (2014), https://doi.org/10.1145/2597008.2597791

15. Dessart, C., Motti, V. & Vanderdonckt, J. Showing user interface adaptivity by animated
transitions. Proceedings of the 3rd ACM Symposium on Engineering Interactive Computing
System, EICS 2011, Pisa, Italy, 13-16 June 2011. pp. 95-104 (2011), https://doi.org/
10.1145/1996461.1996501

16. Dong, Y. & Qu, W. Review of Research on Gesture Recognition Based on Radar Technology.
Artificial Intelligence For Communications And Networks. pp. 390-403 (2021), https://
doi.org/10.1007/978-3-030-69066-3_34

17. Genaro Motti, V., Raggett, D., Van Cauwelaert, S. & Vanderdonckt, J. Simplifying the develop-
ment of cross-platform web user interfaces by collaborative model-based design. Proceedings
of the 31st ACM International Conference on Design Of Communication, SIGDOC 2013,
Greenville, North Carolina, USA, 30 September 2013-1 October 2013. pp. 55-64 (2013),
https://doi.org/10.1145/2507065.2507067

18. Giacalone, A. XY-WINS: an integraded environment for developing graphical user interfaces.
Proceedings of the 1st Annual ACM SIGGRAPH Symposium on User Interface Software, UIST
1988, Alberta, Canada, 17-19 October 1988. pp. 129-143 (1988), https://doi.org/10.
1145/62402.62425

19. Hajika, R., Gunasekaran, T., Haigh, C., Pai, Y., Hayashi, E., Lien, J., Lottridge, D. &
Billinghurst, M. RadarHand: A Wrist-Worn Radar for On-Skin Touch-Based Proprioceptive
Gestures. ACM Trans. Comput.-Hum. Interact.. 31 (2024,1), https://doi.org/10.1145/
3617365

20. Hayashi, E., Lien, J., Gillian, N., Giusti, L., Weber, D., Yamanaka, J., Bedal, L. & Poupyrev,
I. RadarNet: Efficient Gesture Recognition Technique Utilizing a Miniature Radar Sensor.
Proceedings Of The ACM Conference On Human Factors In Computing Systems. (2021),
https://doi.org/10.1145/3411764.3445367

21. Henry, T., Hudson, S. & Newell, G. Integrating gesture and snapping into a user inter-
face toolkit. Proceedings of the 3rd Annual ACM SIGGRAPH Symposium on User Interface
Software and Technology, UIST 1990, Utah, USA, 3-5 October 1990. pp. 112-122 (1990),
https://doi.org/10.1145/97924.97938

22. Kim, K., Kim, J., Choi, J., Kim, J. & Lee, S. Depth Camera-Based 3D Hand Gesture Controls
with Immersive Tactile Feedback for Natural Mid-Air Gesture Interactions. Sensors. 15, 1022-
1046 (2015), https://www.mdpi.com/1424-8220/15/1/1022

23. Leiva, L., Martı́n-Albo, D. & Plamondon, R. Gestures à Go Go: Authoring Synthetic Human-
Like Stroke Gestures Using the Kinematic Theory of Rapid Movements. ACM Transactions
on Intelligent Systems and Technology. 7. pp. 1–29 (2015), https://doi.org/10.1145/
2799648

24. Leiva, L., Kljun, M., Sandor, C. & Copic Pucihar, K. The Wearable Radar: Sensing Ges-
tures Through Fabrics. Proceedings Of The 22nd International Conference On Human-
Computer Interaction With Mobile Devices And Services. (2021), https://doi.org/10.
1145/3406324.3410720

25. Lien, J., Gillian, L., M. Emre, K., Amihoo,d P., Schwesig, C., Olson, E., Raja, H. & Poupyrev,
I. Soli: ubiquitous gesture sensing with millimeter wave radar. ACM Transactions on Graphics.
35, 142:1-142:19 (2016), https://doi.org/10.1145/2897824.2925953

https://doi.org/10.1016/j.cag.2021.07.007
https://doi.org/10.1016/j.cag.2021.07.007
https://doi.org/10.1145/2643204
https://doi.org/10.1145/3593231
https://doi.org/10.1145/2597008.2597791
https://doi.org/10.1145/1996461.1996501
https://doi.org/10.1145/1996461.1996501
https://doi.org/10.1007/978-3-030-69066-3_34
https://doi.org/10.1007/978-3-030-69066-3_34
https://doi.org/10.1145/2507065.2507067
https://doi.org/10.1145/62402.62425
https://doi.org/10.1145/62402.62425
https://doi.org/10.1145/3617365
https://doi.org/10.1145/3617365
https://doi.org/10.1145/3411764.3445367
https://doi.org/10.1145/97924.97938
https://www.mdpi.com/1424-8220/15/1/1022
https://doi.org/10.1145/2799648
https://doi.org/10.1145/2799648
https://doi.org/10.1145/3406324.3410720
https://doi.org/10.1145/3406324.3410720
https://doi.org/10.1145/2897824.2925953

1 zeroG: Towards an IDE for Radar-based Gesture Interfaces 15

26. Loo, J., Gemmeke, J., De Pauw, G., Driesen, J., Van hamme, H. & Daelemans, W. Towards a
self-learning assistive vocal interface: vocabulary and grammar learning. Proceedings Of The
1st Workshop On Speech And Multimodal Interaction In Assistive Environments. pp. 34-42
(2012)

27. Magrofuoco, N., Roselli, P. & Vanderdonckt, J. Two-dimensional Stroke Gesture Recognition:
A Survey. ACM Comput. Surv.. 54, 155:1-155:36 (2022), https://doi.org/10.1145/
3465400

28. Moldovan, A., Nicula, V., Pasca, I., Popa, M., Namburu, J., Oros, A. & Brie, P. OpenUIDL, A
User Interface Description Language for Runtime Omni-Channel User Interfaces. Proc. ACM
Hum. Comput. Interact.. 4, 86:1-86:52 (2020), https://doi.org/10.1145/3397874

29. Nebeling, M., Teunissen, E., Husmann, M. & Norrie, M. XDKinect: development framework
for cross-device interaction using kinect. Proceedings of the 2014 ACM SIGCHI Symposium
on Engineering Interactive Computing Systems, EICS 2014, Rome, Italy, 17-20 June 2014.
pp. 65–74 (2020), https://doi.org/10.1145/2607023.2607024

30. Ousmer, M., Sluÿters, A., Magrofuoco, N., Roselli, P. & Vanderdonckt, J. Recognizing 3D
Trajectories as 2D Multi-stroke Gestures. Proc. ACM Hum.-Comput. Interact.. 4 (2020,11),
https://doi.org/10.1145/3427326

31. Palipana, S., Salami, D., Leiva, L. & Sigg, S. Pantomime: Mid-Air Gesture Recognition
with Sparse Millimeter-Wave Radar Point Clouds. Proceedings Of The ACM On Interactive,
Mobile, Wearable And Ubiquitous Technologies. 5, 27:1-27:27 (2021,3), https://doi.org/
10.1145/3448110

32. Pedersoli, F., Benini, S., Adami, N. et al. XKin: an open source framework for hand pose and
gesture recognition using kinect. The Visual Computer. 30. pp. 1107–1122 (2014), https:
//doi.org/10.1007/s00371-014-0921-x

33. Pucihar, K., Sandor, C., Kljun, M., Huerst, W., Plopski, A., Taketomi, T., Kato, H. & Leiva,
L. The Missing Interface: Micro-Gestures on Augmented Objects. Extended Abstracts Of The
ACM CHI Conference On Human Factors In Computing Systems. pp. 1-6 (2019), https:
//doi.org/10.1145/3290607.3312986

34. Pucihar, K., Attygalle, N., Kljun, M., Sandor, C. & Leiva, L. Solids on Soli: Millimetre-
Wave Radar Sensing through Materials. Proc. ACM Hum.-Comput. Interact.. 6 (2022,6),
https://doi.org/10.1145/3532212

35. Roland, D., Hainaut, J., Hick, J., Henrard, J. & Englebert, V. Database Engineering Processes
with DB-MAIN. Proceedings of the 8th European Conference on Information Systems, Trends
In Information And Communication Systems For The 21st Century, ECIS 2000, Vienna,
Austria, 3-5 July 2000. pp. 244-251 (2000), http://aisel.aisnet.org/ecis2000/68

36. Samuelsson, S. & Book, M. Towards Sketch-based User Interaction with Integrated Software
Development Environments. Proceedings of the IEEE/ACM 42nd International Conference on
Software Engineering Workshops, ICSEW 2020, Seoul, Republic of Korea, 27 June 2020-19
July 2020. pp. 181-184 (2020), https://doi.org/10.1145/3387940.3392231

37. Sellier, Q., Sluÿters, A., Vanderdonckt, J. & Poncin, I. Evaluating gesture user interfaces:
Quantitative measures, qualitative scales, and method. Int. J. Hum. Comput. Stud.. 185 pp.
103242 (2024), https://doi.org/10.1016/j.ijhcs.2024.103242

38. Seyed, T., Azazi, A., Chan, E., Wang, Y. & Maurer, F. SoD-Toolkit: A Toolkit for Interactively
Prototyping and Developing Multi-Sensor, Multi-Device Environments. Proceedings of the
2015 International Conference on Interactive Tabletops & Surfaces, ITS 2015, Madeira, Por-
tugal, 15-18 November 2015. pp. 171–180 (2015), https://doi.org/10.1145/2817721.
2817750

39. Siean, A., Pamparau, C., Sluÿters, A., Vatavu, R. & Vanderdonckt, J. Flexible gesture input
with radars: systematic literature review and taxonomy of radar sensing integration in ambi-
ent intelligence environments. J. Ambient Intell. Humaniz. Comput.. 14, 7967-7981 (2023),
https://doi.org/10.1007/s12652-023-04606-9

40. Sluÿters, A., Lambot, S. & Vanderdonckt, J. Hand Gesture Recognition for an Off-the-Shelf
Radar by Electromagnetic Modeling and Inversion. Proceedings of the 27th International
Conference on Intelligent User Interfaces, IUI 2022, Helsinki, Finland, 22-25 March 2022.
pp. 506-522 (2022), https://doi.org/10.1145/3490099.3511107

https://doi.org/10.1145/3465400
https://doi.org/10.1145/3465400
https://doi.org/10.1145/3397874
https://doi.org/10.1145/2607023.2607024
https://doi.org/10.1145/3427326
https://doi.org/10.1145/3448110
https://doi.org/10.1145/3448110
https://doi.org/10.1007/s00371-014-0921-x
https://doi.org/10.1007/s00371-014-0921-x
https://doi.org/10.1145/3290607.3312986
https://doi.org/10.1145/3290607.3312986
https://doi.org/10.1145/3532212
http://aisel.aisnet.org/ecis2000/68
https://doi.org/10.1145/3387940.3392231
https://doi.org/10.1016/j.ijhcs.2024.103242
https://doi.org/10.1145/2817721.2817750
https://doi.org/10.1145/2817721.2817750
https://doi.org/10.1007/s12652-023-04606-9
https://doi.org/10.1145/3490099.3511107

16 Arthur Sluÿters and Mehdi Ousmer

41. Sluÿters, A., Ousmer, M., Roselli, P. & Vanderdonckt, J. QuantumLeap, a Framework for
Engineering Gestural User Interfaces based on the Leap Motion Controller. Proc. ACM Hum.
Comput. Interact.. 6, 161:1-161:47 (2022), https://doi.org/10.1145/3532211

42. Sluÿters, A., Lambot, S., Vanderdonckt, J. & Vatavu, R. RadarSense: Accurate Recognition of
Mid-air Hand Gestures with Radar Sensing and Few Training Examples. ACM Trans. Interact.
Intell. Syst.. 13 (2023,9), https://doi.org/10.1145/3589645

43. Sluÿters, A., Sellier, Q., Vanderdonckt, J., Parthiban, V. and & Maes, P. Consistent, Con-
tinuous, and Customizable Mid-Air Gesture Interaction for Browsing Multimedia Objects
on Large Displays. International Journal of Human–Computer Interaction. 39, 2492-2523
(2023), https://doi.org/10.1080/10447318.2022.2078464

44. Sluÿters, A., Lambot, S., Vanderdonckt, J. & Villarreal-Narvaez, S. Analysis of User-Defined
Radar-Based Hand Gestures Sensed Through Multiple Materials. IEEE Access. 12 pp. 27895-
27917 (2024), https://doi.org/10.1109/ACCESS.2024.3366667

45. Sousa, K., Filho, H., Vanderdonckt, J., Rogier, E. & Vandermeulen, J. User interface derivation
from business processes: a model-driven approach for organizational engineering. Proceedings
of ACM Symposium on Applied Computing, SAC 2008, Fortaleza, Ceara, Brazil, 16-20 March
2008. pp. 553-560 (2008), https://doi.org/10.1145/1363686.1363821

46. Taranta II, E., Samiei, A., Maghoumi, M., Khaloo, P., Pittman, C. & Laviola Jr., J. Jackknife:
A Reliable Recognizer with Few Samples and Many Modalities. Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems, CHI 2017, Denver, Colorado, USA,
6-11 May 2017. pp. 5850–5861 (2017), https://doi.org/10.1145/3025453.3026002

47. Vanderdonckt, J., Roselli, P. & Pérez-Medina, J. !FTL, an Articulation-Invariant Stroke Ges-
ture Recognizer with Controllable Position, Scale, and Rotation Invariances. Proceedings of
the ACM International Conference on Multimodal Interaction, ICMI 2018, Boulder, CO, USA,
16-20 October 2018. pp. 125-134 (2018), https://doi.org/10.1145/3242969.3243032

48. Villanueva, E., Torres, I., Osaba, E., Canzoneri, S., Franchini, A. & Blasi, L. PIACERE Inte-
grated Development Environment. Proceedings of the 3rd Eclipse Security, AI, Architecture
And Modelling Conference on Cloud to Edge Continuum, ESAAM ’23, Ludwigsburg, Ger-
many, 17 October 2023. pp. 62-66 (2023), https://doi.org/10.1145/3624486.3624507

49. Villarreal-Narvaez, S., Şiean, A., Sluÿters, A., Vatavu, R. & Vanderdonckt, J. Informing Future
Gesture Elicitation Studies for Interactive Applications that Use Radar Sensing. Proceedings
of the ACM International Conference on Advanced Visual Interfaces, AVI 2022, Frascati,
Rome, Italy, 6-10 June 2022. (2022), https://doi.org/10.1145/3531073.3534475

50. Villarreal-Narvaez, S., Sluÿters, A., Vanderdonckt, J. & Vatavu, R. Brave New GES World: A
Systematic Literature Review of Gestures and Referents in Gesture Elicitation Studies. ACM
Comput. Surv.. 56, 128:1-128:55 (2024), https://doi.org/10.1145/3636458

51. Wang, S., Song, J., Lien, J., Poupyrev, I. & Hilliges, O. Interacting with Soli: Exploring Fine-
Grained Dynamic Gesture Recognition in the Radio-Frequency Spectrum. Proceedings of the
29th Annual Symposium on User Interface Software and Technology, UIST 2016, Tokyo, Japan,
16-19 October 2016. pp. 851-860 (2016), https://doi.org/10.1145/2984511.2984565

52. Xia, Z., Oyekoya, O. & Tang, H. Effective Gesture-Based User Interfaces on Mobile Mixed
Reality. Proceedings of the ACM Symposium on Spatial User Interaction, SUI 2022, Online,
CA, USA, 1-2 December 2022. (2022), https://doi.org/10.1145/3565970.3568189

53. Zen, M. & Vanderdonckt, J. Towards an evaluation of graphical user interfaces aesthetics based
on metrics. Proceedings of the IEEE 8th International Conference On Research Challenges
In Information Science, RCIS 2014, Marrakech, Morocco, 28-30 May 2014. pp. 1-12 (2014),
https://doi.org/10.1109/RCIS.2014.6861050

54. Zhai, S., Kristensson, P., Appert, C., Andersen, T. & Cao, X. Foundational Issues in Touch-
Surface Stroke Gesture Design - An Integrative Review. Found. Trends Hum. Comput. Interact..
5, pp. 97-205 (2012), https://doi.org/10.1561/1100000012

https://doi.org/10.1145/3532211
https://doi.org/10.1145/3589645
https://doi.org/10.1080/10447318.2022.2078464
https://doi.org/10.1109/ACCESS.2024.3366667
https://doi.org/10.1145/1363686.1363821
https://doi.org/10.1145/3025453.3026002
https://doi.org/10.1145/3242969.3243032
https://doi.org/10.1145/3624486.3624507
https://doi.org/10.1145/3531073.3534475
https://doi.org/10.1145/3636458
https://doi.org/10.1145/2984511.2984565
https://doi.org/10.1145/3565970.3568189
https://doi.org/10.1109/RCIS.2014.6861050
https://doi.org/10.1561/1100000012

	zeroG: Towards an Integrated Development Environment for Deploying Radar-based Gesture User Interfaces
	Arthur Sluÿters[0000-0003-0804-0106] and Mehdi Ousmer[0000-0002-0222-0029]
	Introduction
	Related Work
	Techniques for Radar-based Interaction
	Tools for Creating Gesture-based Applications
	Design Rationale of zeroG

	The zeroG Framework, a Multi-tool for Gesture-based Interaction
	Dataflow Testing Tool
	Application Development Tool
	Gesture Recognition Service

	Software Architecture
	Gesture Sets
	Modules and Dataflows

	Challenges and Future Directions
	Conclusion
	References
	References

