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zeroG: Towards an Integrated Development
Environment for Deploying Radar-based
Gesture User Interfaces

Arthur Sluÿters[0000−0003−0804−0106] and
Mehdi Ousmer[0000−0002−0222−0029]

Abstract Despite advancing at a tremendous pace recently, few real-world appli-
cations have stemmed from research on radar-based gesture interaction. This phe-
nomenon can be attributed to the complexity of integrating signal processing tech-
niques and gesture recognition algorithms into user-friendly applications, especially
for developers lacking expertise in this field. In response, this paper introduces the
main ideas behind zeroG, an upcoming software framework designed to streamline
the development of radar-based gesture interfaces. Once completed, its graphical
user interface should enable developers to assemble standardized modules into com-
plex gesture recognition dataflows, facilitating both testing and application develop-
ment. By introducing a clear separation of concerns between application frontend
and gesture recognition, zeroG will enable developers to effortlessly adapt existing
dataflows to new applications or sensors, without requiring extensive experience in
(radar-based) gesture recognition. This paper explores the current landscape of tools
for creating radar-based gesture interfaces, introduces the core elements of the zeroG
framework emerging from its early stages of design and development, and outlines
future development stages and potential challenges.

1.1 Introduction

Research on radar-based gesture interaction has been advancing at a tremendous pace
in recent years [1, 16, 42]. However, despite the involvement of large companies like
Google with their Soli platform [25], few real-world applications have emerged from
this research. One reason for this lack of enthusiasm is the complexity involved
in leveraging signal processing and gesture recognition techniques to create user-

Arthur Sluÿters, Mehdi Ousmer
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friendly gesture interfaces. This complexity can be particularly discouraging for
developers who lack expertise in radar-based gesture interaction

While there are development environments for creating user interfaces (UIs)
based on just about every interaction modality, such as voice interaction [26] and
touch interaction [14], the gesture modality still lacks comprehensive coverage [14].
Although we have capitalized on certain aspects of gesture interfaces since their
inception for some devices [18, 21], such as touch screens [9] for 2D multi-stroke
gestures [54, 27] or cameras for 3D mid-air gestures [22, 30], many devices [3]
and contexts of use [14] remain inadequately covered. The development cycle of a
gesture interface is often only partially addressed [50], usually focusing on a few
stages like data acquisition and pre-processing [13], but rarely encompassing the
complete cycle up to its integration into an interactive application [17].

This paper thus introduces zeroG, a software framework in its early stages of
design and development that aims to address these issues by streamlining the devel-
opment of (radar-based) gesture interfaces. It makes multiple contributions in the
domain of Human-Computer Interaction, including:

• A clear separation of concerns between the application frontend and gesture
recognition.

• A standardized format for gestures and modules, which enables developers and
practitioners to implement, share, and assemble modules into complex gesture
recognition dataflows.

• A graphical UI that adapts to developers’ experience levels.
• A seamless transition between development stages (design, implementation, test-

ing, deployment) thanks to its tightly integrated set of tools.

Together, these contributions will help developers effortlessly create and maintain
highly usable gesture-based interfaces without requiring extensive knowledge of
(radar-based) gesture recognition. The rest of this paper is structured as follows:

• Section 1.2 explores related works, including techniques for radar-based gesture
interaction and tools for assisting developers in the creation of gesture-based
applications. Based on our observations, it introduces the main design rationale
for zeroG.

• Section 1.3 provides an overview of zeroG’s key components, namely its dataflow
testing and application development tools, and gesture recognition service.

• Section 1.4 then details elements of its software architecture, including gesture
sets, modules, and dataflows.

• Section 1.5 discusses the main challenges and future directions for the develop-
ment of zeroG.

• Section 1.6 concludes the paper.

Through this approach, we aim to demonstrate how, once completed, zeroG could
simplify the development process of (radar-based) gesture interfaces and contribute
to their popularization.
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1.2 Related Work

In this section, we explore existing works on radar-based gesture recognition (Sec-
tion 1.2.1) and tools designed to facilitate the creation of gesture-based interfaces
(Section 1.2.2). We then introduce the main rationale for the zeroG framework
(Section 1.2.3).

1.2.1 Techniques for Radar-based Interaction

Recent years have seen significant advancements in research on radar-based gesture
recognition [1, 16], with a wide variety of radar sensors being featured in the
literature [42].

Among these, Google’s Soli [25] is one of the most mature systems. Its extremely
compact size enables integration into small portable devices like smartphones and
smartwatches. Soli was initially evaluated with a limited set of four micro-gestures,
but subsequent research has explored other gestures, contexts, and applications [51].
For instance, Hajika et al. [19] employed a wrist-worn Soli radar to identify on-skin
hand gestures, such as swiping on the back of the hand. Hayashi et al. [20] used a Soli
radar embedded in a smartphone to recognize swipe interactions. Their model was
capable of identifying gestures from unsegmented data streams while being small
and efficient enough to run on low-power devices. Pucihar et al. [34] explored Soli’s
ability to detect gestures through 75 materials of varying thicknesses. Similarly,
Leiva et al. [24] investigated the feasibility of integrating Soli into clothing and
furniture by capturing gestures through three different fabrics.

While Soli’s high-frequency and low-power operation makes it ideal for close-
range, high-precision applications, it is not suited for all use cases. For example,
Palapina et al.’s Pantomime [31] focused on full-body gesture recognition, which
required a radar with a greater range than Soli, at the cost of a lower resolution. They
developed a technique based on point clouds to reduce the size of raw radar data
before feeding it into feature extraction and classification algorithms. Sluÿters et al.’s
RadarSense [42] tackled the challenge of interoperability across radar sensors. By
applying normalization to radar signals, they aim to facilitate the reuse of datasets
across different environments and radar systems, as long as these systems operate
within the same frequency range.

Despite the wide range of radars, contexts, and gesture sets explored in these
studies, the proposed techniques often lack flexibility or require substantial expertise
to adapt them to new contexts, such as different sensors, gesture sets, or environments.
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1.2.2 Tools for Creating Gesture-based Applications

Numerous tools have been proposed to facilitate different stages in the creation of
gesture-based applications.

For instance, Ashbrook et al.’s MAGIC [4] is designed to aid in the design
and testing of gestures, particularly to prevent unintended activations. MAGIC’s
implementation is adaptable to a variety of sensors and provides video feedback for
system designers.

Jackknife [46] is a modality-agnostic gesture recognizer that comes with a collec-
tion of techniques, allowing it to handle a wide variety of contexts (sensors, environ-
ments). While it can be adapted to the needs of specific applications relatively easily,
it may need to be combined with other techniques (e.g., gesture segmentation) in
some contexts (e.g., real-time gesture interaction from a continuous stream of data),
which would require more expertise in gesture recognition to perform, and may
not be suited to all contexts (e.g., another recognizer might be needed to recognize
gestures accurately).

Leiva et al.’s Gesture à Go Go [23] augment stroke gesture datasets with synthetic
examples derived from as few as one recording of each gesture. This tool significantly
reduces the time and effort needed to collect enough examples of gestures for training
algorithms for gesture recognition, such as Jackknife.

In [12], Caramiaux et al. introduce a technique for gesture recognition that char-
acterizes gesture execution, including scaling, rotation, and speed. This technique
can be leveraged by developers to construct highly adaptable gesture interfaces. For
instance, the authors demonstrate a sound playback application where the way a ges-
ture is performed changes how the corresponding sound is played, such as playback
speed. The system also supports early recognition, enabling applications to react
while a gesture is still being performed.

XDKinect [29] is an adaptable, extensible framework that facilitates the creation
of cross-device applications using Kinect. With its client-server and event-driven ar-
chitecture, it offers various APIs. The framework supports multi-device interactions
and doesn’t require a direct Kinect connection to the client computer. A user study
found XDKinect easy to use and effective, particularly for users without prior Kinect
experience.

The SoD-Toolkit [38], created for multi-device interactions and ubiquitous en-
vironments, features a ”plug and play” architecture for easy sensor integration. It
includes client libraries for major device and UI platforms, enabling designers to
prototype without physical elements. This toolkit works with Leap Motion, Kinect
v1 and v2, Apple iBeacon, and mobile device sensors. But, it doesn’t allow for
adding new devices and only works with certain app development environments. It
also doesn’t specifically support the development of new gesture-based interactions.

QuantumLeap [41] is a framework for the development of gesture interfaces. Its
modular pipeline architecture can be configured to suit the needs of any gesture-
controlled application using its GUI. The QuantumLeap Javascript API allows de-
velopers to add support for gestures to their applications.
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While these tools are a great step towards facilitating the development of highly
usable gesture-based applications, they still exhibit several major drawbacks. They
typically do not cover all of the main stages of development. Combined with a lack of
interoperability between tools, this complicates their integration into complete devel-
opment or research workflows. They offer limited modularity and flexibility, making
it challenging to adapt them to new sensors and contexts. For instance, XDKinect
focuses solely on Kinect devices and Jackknife does not support deep learning-based
algorithms for gesture recognition. The tools are usually quite low-level, requiring
substantial expertise in gesture recognition to apply them effectively in real-world
applications (e.g., Jackknife, QuantumLeap). These limitations highlight the need
for a comprehensive framework that can streamline the entire development process
of gesture-based applications, from design to deployment.

1.2.3 Design Rationale of zeroG

With zeroG, we aim to build on the effort of researchers and practitioners in gesture
recognition by creating an integrated development environment for (radar-based)
gesture interfaces. This environment will enable developers to move beyond low-
level implementation challenges and focus on the high-level design of gesture-based
interfaces.

The zeroG framework should be modular and flexible, accommodating a wide
range of applications and contexts of use. It should provide a clear separation of
concerns between application UIs and gesture recognition, facilitating their design,
maintenance, and future evolution. In addition, zeroG should be accessible to devel-
opers of all experience levels: (1) experts could manually create gesture recognition
logic from scratch by freely combining modules into dataflows, (2) advanced users
could adapt predefined dataflow templates for their applications by filling placehold-
ers with suitable module implementations, like in QuantumLeap [41], and (3) novice
users could ask zeroG to suggest or even generate appropriate dataflows based on
criteria such as the type of application, sensor(s), and gestures. Most importantly,
zeroG should facilitate a smooth transition between the various development stages
of gesture-based applications, from testing signal processing and gesture recognition
techniques to developing gesture-based applications, and, ultimately, to their use by
end users and their maintenance.

1.3 The zeroG Framework, a Multi-tool for Gesture-based
Interaction

We envision the zeroG framework as a combination of three main components
(Fig 1.1): (1) a testing tool for signal processing and gesture recognition techniques
(Section 1.3.1), (2) a development tool for gesture-based applications (Section 1.3.2),
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Developers & practitioners Mainstream users
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Fig. 1.1: Interaction between the main components of zeroG.

and (3) a real-time gesture recognition system (Section 1.3.3). It will target two main
audiences, namely developers and practitioners, with its dataflow testing and appli-
cation development tools, and mainstream users, as a gesture recognition service.

1.3.1 Dataflow Testing Tool

The zeroG dataflow testing tool is designed to assist researchers and practitioners
in the development and evaluation of novel techniques for gesture interaction, span-
ning from signal processing techniques to algorithms for gesture segmentation and
recognition. It enables users to construct and evaluate dataflows of varying com-
plexity (Section 1.4.2 and Fig. 1.3), ranging from simple setups featuring a single
gesture recognition algorithm to integrated solutions combining filters, segmentation
techniques, and gesture recognition algorithms.

By leveraging a standardized data structure for gesture sets, a modular dataflow
architecture, and shareable configuration files, the tool streamlines the integration and
reuse of dataflow, modules, and gestures across testings scenarios (Section 1.4). This
streamlined approach is especially useful for comparative testings of dataflows, like
evaluating a new algorithm against state-of-the-art techniques in various conditions
or selecting the dataflow configuration best suited to a specific context of use. In
addition, the tool makes it trivial to replicate and reproduce testings from other
research teams, as all the necessary data can be shared in a simple, standardized
package. This could foster collaboration across researchers and ensure the integrity
and reproducibility of experiments.

The tool’s UI features a dynamic dashboard (Fig. 1.2a), providing users with infor-
mation and control over completed, ongoing, and scheduled testings. This dashboard
also serves as a hub for accessing other testing-related features, including creating
new testings and visualizing the results of completed testings. Selecting a specific
testing shows its dataflow configuration, description, status, and logs (Fig. 1.2b).
Testings can be run on external devices, such as a smartphone or a smartwatch, to
determine how a dataflow performs on devices with different capabilities (Fig 1.2c).
Once a testing is completed, users can generate visual representations, including
confusion matrices, to help visualize its results (Fig. 1.2d).
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Fig. 1.2: Mockups of the zeroG UI (testing).
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1.3.2 Application Development Tool

The application development tool extends the capabilities of the dataflow testing tool,
enabling the creation of gesture-based interfaces and ensuring a seamless transition
from the testing of dataflows and modules to their deployment in real applications.

The zeroG framework supports two-way communications with applications, al-
lowing them to provide multiple alternative dataflow configurations on their first
start, increasing the likelihood that one matches end-users’ systems (in particular,
the available sensors). Additionally, applications can switch contexts (e.g., from
UI navigation to drawings recognition), dynamically update dataflow elements (e.g.,
gestures and settings), and send user inputs (e.g., 2D touch-based gestures and button
clicks) as input signals to the dataflow. Dataflows and modules are further described
in Section 1.4.2.

An API is provided to simplify the integration of gesture recognition into applica-
tions, managing the assignment of actions in the application to user gestures and all
other communications with zeroG. In addition, zeroG can generate scaffolding code
based on the API to perform, among other, initialization steps, such as connecting
to the framework and submitting dataflow configurations. By reducing the need for
front-end developers to delve into the intricacies of gesture recognition, the elements
aim to facilitate the development of highly usable gesture-based applications.

zeroG
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Dataflows

Settings

Testings

Search zeroG Modules Settings Large_User_In…      Context_1      Jackknife

Help

Inputs

gesture

datase

Drag to add +

Outputs
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Drag to add
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(a) Dataflow creation tool.
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(b) Dataflow settings.

Fig. 1.3: Mockups of the zeroG UI (dataflow).
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1.3.3 Gesture Recognition Service

The gesture recognition service is the only component of zeroG visible to end-users
(Fig. 1.4). As implied by its name, it operates as a background service on users’
devices and performs gesture recognition for client applications. To improve the user
experience, the service minimizes end-user involvement by automatically initializ-
ing gesture recognition dataflows when applications connect and terminating them
when they become inactive. It also handles other tasks in the background, including
managing all communication with gesture-based applications and downloading any
missing modules and gestures required for an application’s dataflow. End-users re-
tain visibility and control over applications reliant on the zeroG gesture recognition
service, including the ability to remove applications that they no longer trust.

1.4 Software Architecture

In this section, we introduce the main pieces of the zeroG software architecture.
Section 1.4.1 introduces our data structure for gesture sets and Section 1.4.2 discusses
the structure of modules and dataflows.

1.4.1 Gesture Sets

Gesture recordings play an important role in the development of gesture-based
interfaces, serving for training and evaluating gesture recognition algorithms [11].
With this in mind, our objective was to design a standardized and versatile data

zeroG settings

Settings

Debug

Applications
Manage zeroG-enabled applications

About zeroG

Applications

Name Last connected Status

Fruit Cutter 3D      1 min. ago Connected

Image manipula…         Yesterday

Gesture Painter 2 months ago

Disconnected

Disconnected

Remove selected

Fig. 1.4: Mockup of the zeroG gesture recognition service.
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Fig. 1.5: Entity-relationship diagram of zeroG datasets.

structure for gesture sets within zeroG that accommodates signals from different
types of sensors. This approach offers numerous benefits, such as facilitating gesture
reuse across applications and testing environments, and enabling the fusion of data
from multiple sensors (e.g., radars signals, skeleton data, or IMU data). An entity-
relationship diagram illustrating our data structure for gesture sets is provided in
Fig. 1.5.

The GestureSet entity features one or more DataStreams, at least one
GestureClass (e.g., swipe left or thumbs up), and the list of its authors as User
entities. DataStreams encapsulate continuous streams of data and comprise one or
more SensorStreams and Annotations (Fig. 1.6). SensorStreams are uninter-
rupted streams of data captured by a single Sensor. They store the path to a JSON file
featuring the sensor data to avoid storing this information directly in the database.
Annotations serve to annotate a segment within a DataStream and feature a
label, description, and timestamps. They are hierarchical, enabling the creation of
sub-annotations, e.g., if one annotation defines a gesture, sub-annotations can be used
to highlight the start, middle, and ending of the gesture. A GestureClass defines
a category of gestures. It may feature a Visualization (e.g., an image or video)
depicting the gesture. Each GestureClass features at least one GestureSample.
A GestureSample represents one recording of a specific gesture class. In our data
structure, each gesture sample corresponds to an Annotation, thus allowing us to
accommodate both pre-segmented and unsegmented gestures. Each gesture sample
may also include a Visualization. Both the GestureSets and GestureClasses
entities can be assigned Tags, i.e., descriptive labels that can help, e.g., filter and
classify them.
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Fig. 1.6: Illustration of DataStreams, SensorStreams, and Annotations: a) a
DataStream containing two gestures delimited using annotations, b) one gesture
spanning the entire DataStream, c) a gesture with sub-annotations delimiting its
start, middle, and end.

1.4.2 Modules and Dataflows

Dataflows serve as the foundation for constructing gesture recognition logic. They
can be evaluated in the testing tool (Section 1.3.1) or used for real-time gesture
interaction in the application development tool (Section 1.3.2). They comprise inter-
connected Modules of three types, namely Sources, Transforms, and Sinks.
Sourcemodules generate signals that can be consumed by other modules within

the dataflow. They can range from sensors like radars, Kinect devices, or Leap
Motion Controllers, to user inputs such as buttons in the application UI, to system
events. Transform modules process input signals and send the result to subsequent
modules. For example, a gesture segmenter might take individual frames as input
and produce sequences of frames corresponding to potential gestures. Meanwhile, a
gesture recognizer might receive these sequences of frames and output the type of
gesture detected. Sink modules receive and consume incoming signals. They may,
for instance, send the signals to a connected application or save them in a log file.
Finally, Compoundmodules are combinations of other modules, such as a segmenter
and a gesture recognizer, into a single block for easy reuse across various dataflows.

Applications can feature different Contexts that they switch between during
interaction, with each context potentially requiring a distinct dataflow composed of
different modules tailored to the type of gestures to be recognized. For instance, one
dataflow might be designed for basic UI navigation gestures, while another might
focus on mid-air drawing recognition. This contextual separation enhances gesture
recognition accuracy, by tailoring dataflows to specific sets of gestures, and ensures
a better separation of concerns.

Finally, zeroG supports Templates to facilitate the creation of dataflows for
testings and applications. Similar to the approach used in Sluÿters et al.’s Quan-
tumLeap [41], zeroG’s templates are essentially incomplete dataflows that include
Placeholder modules. These placeholders can be replaced with specific modules
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suited to a specific context. Templates promote efficient software reuse and can be
employed by users of all experience levels to easily construct gesture recognition
dataflows. In the future, zeroG could automatically suggest dataflows tailored to an
application’s use case by leveraging the templates, modules, and dataflows stored
in its database. This capability would enable even novice users to create complex
gesture-based interfaces from scratch with minimal effort.

1.5 Challenges and Future Directions

As zeroG is still in its early stages of design and development, several challenges
remain to be addressed before a first version is ready to be deployed. A critical
area concerns the communication between modules, which requires establishing a
standardized data format compatible with various types of sensor data, including
skeletons, radar signals, and IMU data. Another challenge lies in supporting multi-
modal sensing, such as combining radar- and vision-based inputs, which will require
synchronization mechanisms between the source modules. In addition, implementing
a suggestion system for dataflow configurations and modules, as well as automati-
cally downloading missing components required by gesture-based applications, will
both be essential for making zeroG accessible to all users. This will involve creating
and maintaining a comprehensive database of dataflows, modules, and gestures. We
could also look into supporting modules written in different programming languages
to enhance the framework’s flexibility. Finally, providing accurate visualizations of
recorded gestures, especially radar-based ones, presents a significant challenge. For
instance, after end-users record new gestures, they, or the system, may need a way
to visualize it later, e.g., to display gesture hints in the application.

1.6 Conclusion

In this paper, we introduced zeroG, a novel integrated development environment
designed to facilitate the development and deployment of (radar-based) gesture inter-
faces. We began by reviewing existing techniques for radar-based gesture interaction
and tools for developing gesture-based applications. Our findings underscored a need
to streamline the development process of gesture interfaces, leading us to introduce
the design rationale for zeroG. We then described the three main components of ze-
roG, each designed to address some of these shortcomings: (1) the dataflow testing
tool, which assists users in the development and evaluation of gesture interaction
techniques, (2) the application development tool, which helps create gesture-based
interfaces with minimal effort, and (3) the gesture recognition service, which runs in
the background on end-users device and manages gesture recognition for client ap-
plications. Finally, we introduced the core elements of zeroG’s software architecture,
including gesture sets, modules, and dataflows.
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Overall, by seamlessly integrating into research and development workflows ze-
roG has the potential to foster the emergence of new techniques for gesture recogni-
tion, as well as facilitate their efficient sharing across the community and their use
in real-world applications.
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